
VAST/77to90
Fortran 77 to Fortran 90

Translator

User’s Guide
Version 3.1

Pacific-Sierra Research

VAST/77to90 User’s Guide Document revision record ii

Document revision record
Document number V7790C.

Edition Date Description

1.0 1/92 Initial release.

1.1 3/92 Minor corrections, INCLUDEs to MODULEs.

1.2 7/92 Added switches, more invocation examples.

2.0 1/93 Derived types to/from VAX-compatible structures,
documentation of error detection and trace tools,
Changed organization of document.

2.1 7/93 Minor improvements and corrections.

2.2 3/94 Minor improvements and corrections.

3.0 4/95 Major revision. Change document organization.

3.1 10/95 Minor corrections and additions.

Copyright (C) 1992,1995, Pacific-Sierra Research Corporation. No unauthorized
use or duplication is permitted. All rights reserved.

VAST/77to90 User’s Guide Preface iii

Preface
This is a guide to the use of VAST/77to90. VAST/77to90 is a programming tool
that translates Fortran 77 into Fortran 90. This manual is designed to give
Fortran programmers an understanding of VAST/77to90's capabilities and
effective use.

Fortran 90 is the new Fortran language standard (ISO and ANSI). This User's
Guide does not contain language reference information; for more information
about Fortran 90, please refer to one of the many books that have been published
on this subject.

An excellent source of information on Fortran 90 is the Fortran 90 Handbook
(McGraw-Hill, 1992) by Adams, Brainerd, Martin, Smith, and Wagener. This
book gives more background and examples than the standard, and still
documents the complete language.

Special notices

VAST is a registered trademark of Pacific-Sierra Research Corporation.

VAX is a trademark of Digital Equipment Corporation.

VAST/77to90 User’s Guide Table of Contents iv

Table of Contents

DOCUMENT REVISION RECORD ..ii

PREFACE...iii

SPECIAL NOTICES ..iii

TABLE OF CONTENTS... iv

1. INTRODUCTION...1

FORTRAN 77 TO FORTRAN 90...1
ADDITIONAL FEATURES ...1
FURTHER INFORMATION...2

2. INVOKING VAST/77TO90 ...3

VAST/77TO90 COMMAND LINE...3
EXAMPLES: 77 TO 90 ...3
VAST/77TO90 SWITCHES AND OPTIONS...4
MORE INFORMATION..4
COMMAND FILE ...4
TRACE DEBUGGING OPTION...5
FILE EXTENSIONS ...5

3. OPTIONS...6

SWITCHES ..6
SWITCH directive ...6

TRANSFORMATION SWITCHES ..6

4. VAST/77TO90 LISTING..10

SOURCE LISTING...10
DIAGNOSTIC MESSAGES..10

Optimization inhibition messages ...11
Informative messages ..11
Error messages..11

EXAMPLE LISTING ..11
LISTING CONTROL SWITCHES..12
LISTING PAGE LENGTH..14

5. FORTRAN 77 TO FORTRAN 90..15

FIXED FORMAT TO FREE FORMAT ...15
DECLARATIONS ..15
EXTENSIONS...15
CONTROL STATEMENTS..16

Arithmetic IF to GOTO ...16
GO TO to block IF ..16
Labeled DO to DO/ENDDO..17
GOTO to CYCLE and EXIT ..17

VAST/77to90 User’s Guide Table of Contents v

Computed GOTO to CASE..18
Block IF to CASE ..18

INCLUDES TO MODULES ...19
COMMON ..20

COMMONs to MODULEs ..20
COMMONs to INCLUDEs ..21

INTERFACE FILES..21
Creating interface files..21
Including interface files...22

VAX-COMPATIBLE STRUCTURES..23
USER DIRECTIVES...24

SKIP/NOSKIP ...25
NODEPCHK/DEPCHK ..25
NOEQVCHK/EQVCHK ..26
PERMUTATION..26
NOLIST/LIST...26
Specifying directives on invocation...26

ALTERNATE RETURN ..26
STATEMENT FUNCTIONS ...26
OTHER OBSOLESCENT FEATURES ...27

6. ARRAY SYNTAX...28

SKIP/NOSKIP DIRECTIVES ...28
LOOP TYPES ...28
ALLOWED STATEMENTS ...28
UNDERSTANDING LOOP VARIABLES..29
INDEXING ...30

Indirect Addressing ...31
STORING INTO SCALARS ...32

Scalar promotion...32
Scalar folding..33
Carry-Around Scalars ...33
Reduction Functions..33

CONDITIONAL OPERATIONS ..35
FUNCTIONS AND SUBROUTINES..36
OUTER LOOPS ..37

Conformability ..37
OUTER LOOP INHIBITORS ...38
MATRIX MULTIPLY RECOGNITION..39
LOOP REROLLING...40
DATA DEPENDENCY ANALYSIS ..41

Data Dependency Examples..41
Reference Reordering..43
Ambiguous Subscript Resolution...44
Loop peeling..44
NODEPCHK -- declaring non-recursion..44
NOEQVCHK -- non-recursion in equivalences ..45
PERMUTATION -- declaring safe indirect addressing ..46

7. ADDITIONAL FEATURES...47

STATIC ANALYSIS OF VARIABLES..47
TRACE DEBUGGING ..48

8. OUTPUT FORMATTING ...50

VAST/77to90 User’s Guide Table of Contents vi

OPTION SWITCHES ..50
OUTPUT FORMAT PARAMETERS..52

Label renumbering ..52
Label alignment...53
Indentation ..53
Inline comments ..54
Continuation lines ...54
Output line length..54

FORMAT AND DATA STATEMENTS ...55
EXAMPLE ...55

9. DIAGNOSTIC MESSAGES...57

DATA DEPENDENCY CONFLICTS ...57
TRANSLATION DIAGNOSTICS ..59

Statement types..59
Branches..60
External references ...60
DO statement...61
Outer loops..61
Miscellaneous..62

WARNINGS ...62
Potential Errors ..62
Obsolescent Features ..63

SYNTAX ERRORS ..63
INTERNAL ERRORS...63
DIRECTIVE ERRORS..63
NOTES..64

QUESTIONS OR COMMENTS..65

INDEX..66

VAST/77to90 User’s Guide 1. Introduction 1

1. Introduction
VAST/77to90 translates Fortran 77 into Fortran 90 as described below. In
addition, VAST/77to90 has various supplementary features that assist in
maintaining Fortran programs, which are described in a later section.

Fortran 77 to Fortran 90
If you have an existing Fortran program and would like it to take advantage of
the new features available in Fortran 90, VAST/77to90 will translate it into
Fortran 90 for you. This allows you to take old programs and create new, clean
efficient versions in Fortran 90 automatically.

VAST/77to90 contains many output formatting features which improve the
appearance of the output code. You can specify exactly how you want the output
code to look by using some of the many optional parameters, or you can rely on
the default standards.

For detailed information on converting Fortran 77 to Fortran 90, see Section 5. In
this mode, VAST/77to90 converts DO and IF loops into Fortran 90 array syntax.
This conversion process is described in Section 6. For some massively parallel
systems, Fortran 90 array syntax will run much faster than the equivalent DO
loop. For these systems, VAST/77to90 can be used as an optimizer to get more
efficient code from existing programs.

Translating to Fortran 90 can be done with the v77to90 command. If the input
file name ends in .f, the translated Fortran 90 file will have a V prefixed to it and
the .f will be changed into .f90. For example, if your input file (Fortran 77) is
dusty.f, then it will be converted to Fortran 90 with the command:

 v77to90 dusty.f

The Fortran 90 output will be in file Vdusty.f90. (Common blocks that have
been converted to modules will be in files like Vcommon.m. Generated interfaces
will be in files like routine.inf.)

Additional Features
VAST/77to90 includes several additional features that are useful in working with
existing Fortran programs. These features are of primary use for Fortran 77
programs, but they can be applied to work with new Fortran 90 programs as
well. The features are:

• Static error detection. VAST/77to90 reports on cases where undefined
variables are being used, and other potentially unsafe or incorrect

VAST/77to90 User’s Guide 1. Introduction 2

programming practices. This can be done for one routine or interprocedural
error detection can be done for a whole program.

• Code formatting. VAST/77to90 will "tidy" existing Fortran programs,
adding spaces and indenting. See section 8.

• Trace debugging. VAST/77to90 will insert print statements into routines
that trace all relevant events. Useful for debugging in situations where an
interactive debugger is insufficient.

Further Information
Section 2 describes in more detail how to invoke VAST/77to90 with the v77to90
command, and you probably will want to look at this section, if nothing else.

The switches and options that can be given to VAST/77to90 are discussed in
section 3 (translation), 4 (listing), and 8 (output formatting).

If you are interested in the specifics of Fortran 77 to Fortran 90 translation, you
may want to examine sections 2 (invocation), 3 (translation options), 4 (listing
options), 8 (code output format options), 5 (f77 to f90), and 6 (loops to array
syntax).

If you are interested in tools to help with Fortran 77 programs, look at sections 8
(code formatting) and 7 (additional features).

VAST/77to90 User’s Guide 2. Invoking VAST/77to90 3

2. Invoking VAST/77to90

VAST/77to90 Command line
VAST/77to90 is executed by the command:

 v77to90 [-o output] [-l listing] [options]
 [-77to77] input1 [...inputn]

• output = compilable output file. The default output file name is the input
file name prefixed by V. If the output is Fortran 90, the extension of the
default output file will be .f90.

• listing = VAST/77to90 listing file. Unless this parameter is used, no
listing is produced.

• options = VAST/77to90 options and parameters. See Section 3 (translation
options), Section 5 (listing options), and Section 8 (source output options).

• input1...inputn = Fortran 77 source input files.
• -77to77 = don’t translate to Fortran 90, but apply output formatting and

static analysis to Fortran 77 source.

VAST/77to90 invoked with no arguments prints a short usage summary,
including the VAST/77to90 version number.

Examples: 77 to 90
Below are some examples of using the v77to90 command to translate Fortran 77
to Fortran 90.

Example 1:

To run sub.f through VAST/77to90, save the VAST/77to90 listing in file
sub.lst , and save the translated code in sub.v.f90 :

 v77to90 -l sub.lst -o sub.v.f90 sub.f

Example 2:

To run sub.f through VAST/77to90, turning on aggressive array syntax
translation and interface file generation (-xrf), turning off creation of modules
and translation of computed GOTO into CASE (-yms), list argument mismatch
problems (-p4), change indenting amount to five spaces (-ZINDAL=5), and put
the listing into file lst:

 v77to90 -xrf -yms -p4 -ZINDAL=5 -l lst sub.f

VAST/77to90 User’s Guide 2. Invoking VAST/77to90 4

Example 3:

To run sub.f through VAST/77to90, formatting the output code but remaining
in Fortran 77 (output will be in file Vprog3.f):

 v77to90 -77to77 prog3.f

VAST/77to90 switches and options
VAST/77to90 allows the following switches and options on invocation:
Switches
 enable disable
translation: [-x switches] [-y switches]
listing: [-p switches] [-q switches]
output format: [-r switches] [-n switches]

Options

trace debug: [-t]
pass directive: [-D directive[:routine,routine...]]
command file: [-F filename]
page length: [-Ppage nnn]
output format: [-Z option=value]

• switches = concatenated string of switches to enable or disable. (For
settings, see section 3.)

• routine = name of Fortran subroutine or function.
• nnn = integer constant

More Information
Transformation options (-x,-y) are described in section 5, listing options (-p,-
q,-P) in section 6, and output format options and parameters (-r,-n,-Z) in
section 7. The -D parameter is discussed in section 8.

Command File
The -F parameter allows redirection of command line input from a file. This is
useful when many options are specified (e.g. -D parameters), or to insure a
uniform set of invocation options over many invocations. Each command must
appear on a separate line. Furthermore, spaces cannot be used to separate
keywords from arguments (this is different from the command line convention.)
For example, in the invocation

 v77to90 -Finput.dir input.f

in input.dir,

 -o output.f

VAST/77to90 User’s Guide 2. Invoking VAST/77to90 5

will not work. Rather, use:

 -ooutput.f.

Trace Debugging Option
The -t parameter enables trace debugging. This disables all translation, and
inserts print statements for each "event" in the program (each branch,
assignment, subroutine call, if-test, etc.)

File extensions
The table below summarizes the file types that VAST/77to90 may use or create.

Extension Description

.f Fortran 77 source.

.inc Fortran INCLUDE (Fortran 90 and extended Fortran 77)
(usually used to hold common blocks).

.f90 Fortran 90 source.

.m Fortran 90 module: used in place of common to hold global data,
may also have internal routines that operate on the data.

.inf Fortran 90 interface file: number, intent, type and attributes of
the arguments to a routine -- used to check connections between
program units.

.TBL1 {V-.inc} {File of common block that corresponds to a created .m:}

.TBL1 { } {used by VAST-90 to check correspondence of variables,}

.TBL1 { } {can be deleted after all commons have been replaced}

.TBL1 { } {with uses of the module.}

VAST/77to90 User’s Guide 3. Options 6

3. Options

Switches
Switches specifying global actions can be passed to VAST/77to90 in the
processor invocation command (as described in the preceding chapter), or via
the SWITCH source directive.

When translating your program from Fortran 77 to Fortran 90, you may want to
use switches to control the form of the output source code, as you may adopt this
code as your new source.

There are three kinds of switch control:

• Control of translation (-x and -y invocation parameters).
• Control of listing (-p and -q invocation parameters).
• Control of output formatting (-r and -n invocation parameters).

Translation switches are described below. Listing options are described in the
next section, and output formatting options are described in the section after that.

SWITCH directive
SWITCH directives may be inserted into the source program. The format is:

CVD$ SWITCH[,-x ss][,-y tt]
 [,-p ll][,-q kk]
 [,-r zz][,-n xx]
 [,output_format_parameters]
 [,-Ppage nn]

corresponding to the invocation switch parameters.

Transformation switches
The table below shows the switches that affect the transformation of the input
program; these generally apply to the Fortran 77 to Fortran 90 translation mode.
-x enables these switches (on), -y disables these switches (off).

VAST/77to90 User’s Guide 3. Options 7

Table 3.1 -- Transformation control switches (-x/-y)

Switch Description Default

a Free format input. off
b Free format output source code. on
c Fortran 90 subset; see description off
d Translate F77 declarations to F90 declarations. on
e Examine EQUIVALENCE stmnts for data dependency. on
f Generate INTERFACE files. off
g Move DATA information to initialization expressions on
h Change INCLUDEs to MODULEs on
i Put COMMONs into INCLUDE files. off
j VAX-compatible structures converted to derived types off
k Treat D in Column 1 as a comment (OFF: D=blank). on
l Transform IF...GO TO loops to DO and DO WHILE. on
m Make MODULEs from COMMON. on
n Skip all executable transformations. off
o Reserved. -
p

������� �	��
�� "!
on

q Reserved. -
r Aggressively generate array syntax. off
s Replace computed GOTO with CASE. on
t Replace Block IF with CASE. on
u Reserved. -
v Translate loops to F90 array syntax. on
w Reserved. -
x Generate CYCLE and EXIT from GOTOs in loops. on
y Reserved. -
z Reserved. -
1 Insert INCLUDEs to interface files if they exist. off
2 Insert INCLUDEs of interface files for all calls. off

As an example, -yel causes EQUIVALENCE statements not to be examined for
data dependency analysis when translating loops into array syntax, and IF loops
not to be converted to DO loops.

A few switches duplicate or overlap the functions of directives. For example, the
-yp switch is equivalent to the NODEPCHK directive with file scope (CVD$F
NODEPCHK).

Notes on transformation switches:

b. Output file is free format. This is the default. If you want fixed format
Fortran 90 output, specify -yb.

c. Fortran 90 subset. Primarily for compatibility with various SIMD computers,
this switch emphasizes translation into array syntax and turns off various
other features. Specifically, it turns on agressive array syntax translation
(-xr), avoids ALLOCATE when declaring array temporaries, turns off
declaration regeneration (-yd), does not create MODULE s from

VAST/77to90 User’s Guide 3. Options 8

COMMON s (-ym), and generates fixed format output rather than free
format output (-yb).

d. Change declarations to use the Fortran 90 attribute form. See section 8.3.

e. Examine EQUIVALENCE statements for data dependency. (Discussed in
section 6.)

f. Generate INTERFACE files. INTERFACE files allow diagnosis of problems
involving argument mismatches. See also switches 1 and 2.

g. Move DATA information to initialization expressions. This transformation
(on by default) deletes DATA statements where possible and initializes scalar
data directly in the new Fortran 90 declaration.

h. Change INCLUDEs into MODULEs. If your program already references
INCLUDE files, VAST/77to90 will turn them into MODULE files for you.
For example, if many parameters are grouped into an INCLUDE, they will be
grouped in the MODULE. See section 5.

i. Put COMMONs into INCLUDE files. Conflicting COMMON definitions are
noted. This turns off switch m, creation of modules from COMMON. See
section 8.5.

j. Convert VAX-compatible structures to derived types.

k. Treat D in column 1 as a comment character. If this switch is off, a D in
column one is treated as a blank. This switch provides compatibility with a
debugging feature of some compilers.

l. Transform IF loops to DO loops. (Discussed in section 6.)

m. Convert COMMONs to MODULEs. This is on by default. VAST/77to90
creates module files and USEs them in place of COMMON blocks in the
input program. You cannot use this switch in combination with -xi
(COMMONs to INCLUDE files). See section 5.

p.
������� �	��
��#��$���%���� "!

-yp is equivalent to the
NODEPCHK directive with file scope. (Discussed in section 6.)

r. Aggressively generate array syntax. By default, VAST/77to90 is
conservative in converting loops into array syntax; it only converts loops that
will look reasonably clean in array syntax. However, if you want all possible
loops converted to array syntax, then you should specify the -xr switch.
You might want to do this if your target system was a massively parallel
processor, for instance. If you are converting to Fortran 90 to obtain a cleaner
source code, then the -xr switch is not recommended. See section 6 for
more information on translation to array syntax and what is controlled by the
r switch.

v. Transform loops into array syntax. -yv is equivalent to the SKIP directive
with file scope.

VAST/77to90 User’s Guide 3. Options 9

x. Change GOTOs that target labels just before the end of loops into CYCLEs,
change GOTOs targeting labels just after the end of loops into EXITs.

1. Insert INCLUDE statements for interface files for each external call, checking
first to see that the interface file already exists for the called routine. This is
mutually exclusive of the next switch. See also switch f.

2. Insert INCLUDE statements for interface files for all external calls, without
checking first to see that the interface file already exists. Assume that the
INCLUDEd files will be created before the Fortran 90 output itself is
compiled. This is mutually exclusive of the previous switch. See also switch
f.

Switches set via the SWITCH directive may be set only once within a routine;
that setting applies to the whole routine.

VAST/77to90 User’s Guide 4. VAST/77to90 listing 10

4. VAST/77to90 listing
You may want to exchange information with VAST/77to90 in order to get the
best translation of your program, especially if you are translating from Fortran 77
into Fortran 90. Two paths of communication are available for this purpose: (1)
VAST/77to90 informs you of the actions it takes on the program (which loops
were optimized, which loops were not translated into array syntax and the
reasons for their rejection); (2) you can pass information and commands to
VAST/77to90 via directives inserted into the program (see section 5), or via
global switches on the VAST/77to90 invocation command (see section 3).

The full VAST/77to90 listing consists of four parts: a listing of the input source,
a block of diagnostic messages, a listing of the output transformed source, and
summaries of overall statistics. Any part of the listing can be separately enabled
or disabled via the listing switches shown in the table below. An example of a
full listing is also given later in this section.

Source listing
The input source lines are numbered on the listing. Source lines coming from
INCLUDEs are numbered as well. These line numbers are used in the messages,
output source listing, and summaries. The codes used for the loop disposition
graph (when translating from Fortran 77 into Fortran 90) are listed in Table 6.1:

Table 6.1 -- Loop disposition codes

A No action requested.
D Data dependent.
E Deleted.
N Not chosen.
T Translation problem.
V Translated to array syntax.

The numbers in the column at the right edge of the output source listing
correspond to input source line numbers, to help in comparing the transformed
source to the original source.

Diagnostic messages
&('*),+.-0/�/�����1�23� 4������
����� 5�����.67�� 5 5��
��� 8����������9���:��
�$��;��<���	��=��������>��?���=��� 5��;�$���
listing. Each message includes the line number and (if relevant) a variable name.+�=��� 5��67�� 5 5��
��� 4��$��&('�)0+.-,/�/�����1�23� 867������ 8��?���������?�@�����
A@���;<��?#B:=����	��$��C�����67 8���
encountered in optimizing the loops in the source program. There are several
different types of diagnostics.

VAST/77to90 User’s Guide 4. VAST/77to90 listing 11

Optimization inhibition messages
• Translation Diagnostic. Describes a problem or potential problem in

translating a loop into array syntax.
• Data Dependency Conflict. A real or potential feedback from one loop pass to

the next prevents the safe use of array operations.

Informative messages
• Warning Message. Some potentially troublesome input has been encountered.
• Note Message. Additional information that may be of use.

Error messages
These messages are routed to the standard error file, and are more serious:
• Syntax Error. A construct that is not legal in Fortran has been encountered.

No translation is done for this program unit.
• Internal Error. An internal problem with VAST/77to90 has been detected. No

further processing is done for this subprogram; translation is attempted
again for the next subprogram in the input file. Please report the error.

You can suppress each of these types of messages independently via the -q
parameter on the VAST/77to90 command line or on the SWITCH directive (see 5���%�������:D3E5!8),�������F���:1��������������� 8��?�;��������� 5�	��?�&('*),+.-,/�/�����1�2�� 8������
����� 5������ 5G�B:����=
further explanation of the messages, and tips on avoiding certain problems.

Following the listing of the transformed source is the Event Summary, which
gives overall counts of errors, diagnostics, and loops transformed.

Example listing
Figure 6.1 shows a VAST/77to90 listing of a subroutine containing several loops
which are translated to array syntax and a block IF which becomes a CASE.

Pacific-Sierra Research VAST/77to90 V0.05I2 16:19:24 1/29/92 FORTRAN 90

 1. SUBROUTINE FISH
 2. COMMON /COM1/ A(99), B(99), C(88), E
 3. DOUBLE PRECISION A, B
 4. INTEGER C, E
 5. c
 6. c...Test on E
 7. IF (E.EQ.1) THEN
 8. V- DO 100 I = 1, N
 9. V- 100 A(I)=B(I)
 10. ELSE IF (E.EQ.2) THEN
 11. V- DO 200 I = 1, N
 12. V- 200 A(I)=B(I)**2
 13. ELSE IF (E.GE.3) THEN
 14. V- DO 300 I = 1, 99
 15. V- 300 IF (B(I).LT.0) A(I)=0.
 16. ENDIF
 17. END

VAST/77to90 User’s Guide 4. VAST/77to90 listing 12

 SUBROUTINE FISH
!..Translated by Pacific-Sierra Research VAST/77to90 0.05I2 16:19:24 1/29/92
!---
! M o d u l e s
!---
 USE VCOM1
 IMPLICIT NONE
!---
! L o c a l V a r i a b l e s
!---
 INTEGER I, N
!---
!
!...Test on E
 SELECT CASE (E)
 CASE (1)
 A(:N) = B(:N)
 CASE (2)
 A(:N) = B(:N)**2
 CASE (3:)
 WHERE (B < 0) A = 0.
 END SELECT
 END SUBROUTINE FISH

-------------------- EVENT SUMMARY FOR ROUTINE FISH ------------------
WARNING MESSAGES -- 0 SYNTAX ERRORS -- 0
TRANSLATION DIAGNOSTICS -- 0 DATA DEPENDENCY CONFLICTS -- 0
LOOPS EXAMINED -- 3 LOOPS TRANSLATED -- 3

Figure 6.1 Example VAST/77to90 listing

Listing control switches
Table 6.2 shows the switches that control the format of the listing file. These
switches can be used either on the invocation (for example, -q h) or on the
SWITCH directive (e.g., CVD$ SWITCH,-q h).

 Table 6.2 -- Listing control switches

Switch Description Default

a Reserved. -
b List input line nos. in columns 73-80 of output listing. on
c List data dependency conflict messages. on
d List declarations added by VAST/77to90. off
e List event summary at end of routine. on
f List fatal error messages. on
g List translation diagnostics. on
h List input source lines. on
i List included lines. on
j Reserved. -
k Reserved. -
l Produce a listing. off
m List messages. on
n List translated code. on
o List optimization notes. off

VAST/77to90 User’s Guide 4. VAST/77to90 listing 13

p List loop summary at end of routine. on
q Reserved. -
r List potential errors. on
s List only summary information. off
t Terminal listing: format output for 80 columns. on
u Show extent and disposition of loops in source. on
v List function references. off
w List warning messages. on
x Reserved. -
y List syntax errors. on
z List possibly undefined variables. on

As an example, if you wanted to get a 132-column printer listing with no warning
messages and no event summary, you would specify -q twe.

Notes on the listing switches:

b. List corresponding input line numbers in columns 73-80 of the listing of the
transformed source. This switch is valid only if the n switch is on. This
listing feature is useful in relating transformed source lines to original source
lines.

d. List declarations added by VAST/77to90. This switch is valid only if the n
switch is on.

i. List lines that come from INCLUDEd files. When this switch is on, source
lines obtained from INCLUDE files are listed. They are identified by a dash
following the line number. This switch is valid only if the h switch (list
source lines) is on.

l. Produce a listing. -q l suppresses all parts of the listing (except the initial
header, if the t switch is on). -q l is equivalent to the NOLIST directive.

r. List potential programming errors, as warning messages.

s. List only summary information. If the s switch is used, none of the other
listing switches except t may be used.

t. Format the listing for a terminal. -q t results in a wide-format listing file,
with printer control, pagination, and page headers, suitable for a 132-column
line printer.

u. Show extent and disposition of loops in the input source listing. "Draws" a
bracket alongside each loop, indicating how VAST/77to90 treated the loop
(translated to array syntax, too short, data dependent, and so forth).

VAST/77to90 User’s Guide 4. VAST/77to90 listing 14

Listing page length
 If you want a paginated, wide format listing suitable for a line printer, use the -q
t option. The page length defaults to 66 lines. To change the number of lines per
page, use the -Ppage parameter. For example,

 -Ppage 60

changes page length to 60 lines per page.

VAST/77to90 User’s Guide 5. Fortran 77 to Fortran 90 15

5. Fortran 77 to Fortran 90
+�=��F 8 5�����������:���� H����C��� 4?�������;���� 8��?�&('�)0+.-0/3/�����1�2�� 8I����������:/�/����AI���$��$���:1�2
translation mode. Translation of loops into array syntax is a special case that is
discussed in detail in Section 9.

Fixed format to free format
By default, VAST/77to90 creates free format Fortran 90 source code. This format
does not rely on column placement. It uses & at the end of a line to indicate that a
continuation is coming, and it uses ! as the comment character (which can
appear anywhere in a line to signify that the rest of the line is a comment.)

You can request fixed format output with the -yb switch.

Declarations
VAST/77to90 will change all the declarations into Fortran 90 form by default.
Declarations are collected by type and arrays are grouped by identical
declarations of shape. Initialization values are sometimes folded into the
declarations (for local parameters and some items in DATA statements).

VAST/77to90 generates a separate module file (vast_kind_param.m) that
contains definitions of data type kinds. This module is then USEd in the
translated source to supply definitions of type kinds. This file should be
compiled before or with the translated source file.

VAST/77to90 declares all variables appearing in the routine explicitly, and the
IMPLICIT NONE statement is added at the top of the routine.

If you prefer to have declarations remain in Fortran 77 form, use the -yd switch.

Extensions
Many Fortran 77 extensions are accepted. Some are simply passed through to
the output source; others, such as the “byte”-style declaration syntax, are
translated to Fortran 90 constructs where possible. One Fortran 77 extension not
accepted is the pointer data type. As described later in this section, VAX-style
structures can be translated into Fortran 90 derived types.

Example:
 real*8 x(100)

VAST/77to90 User’s Guide 5. Fortran 77 to Fortran 90 16

Translation:
 use vast_kind_params
 ...
 real(double) , dimension(100) :: x

Control statements
VAST/77to90 changes many older control statements into the newer control
statements available in Fortran 90. This reduces the number of GOTO statements
and the number of labels in a program, making the flow of control much easier to
follow and maintain.

Arithmetic IF to GOTO
Arithmetic IF statements are transformed into IF (...) GO TO statements or if
possible block IFs.

Example:
 IF (Y) 200, 50, 60
 50 CONTINUE
 X = 0.
 GO TO 100
 60 CONTINUE
 X = 1.
 100 CONTINUE
 Y = Y + Z
 200 CONTINUE

Translation:
 IF (Y >= 0.) THEN
 IF (Y <= 0.) THEN
 X = 0.
 ELSE
 X = 1.
 ENDIF
 Y = Y + Z
 ENDIF

GO TO to block IF
VAST/77to90 changes GOTOs into block IFs when possible.

Example:
 IF (X .GT. Y) GO TO 10
 S = SQRT(T)
 GO TO 20
 10 CONTINUE
 S = EXP(T)
 20 CONTINUE

VAST/77to90 User’s Guide 5. Fortran 77 to Fortran 90 17

Translation:
 IF (X <= Y) THEN
 S = SQRT(T)
 ELSE
 S = EXP(T)
 ENDIF

The loop below is not converted to block form, as the branches are not properly
nested.

Example:
 IF (X .GT. Y) GO TO 10 (Not converted.)
 S = SQRT(T)
 IF (Y .GT. Z) GO TO 20
 10 CONTINUE
 U = EXP(V)
 W = Z**2
 20 CONTINUE

Labeled DO to DO/ENDDO
Example:
 DO 250 I = 1, n
 read *, x(i), y(i), z(i)
 250 continue

Translation:
 do I = 1, n
 read *, x(i), y(i), z(i)
 end do

GOTO to CYCLE and EXIT
VAST/77to90 translates branches to the end of a loop into CYCLEs, and branches
to the statement immediately following the end of a loop into EXITs. Extraneous
labels are deleted. CYCLEs and EXITs for non-inner loops are handled; if
necessary a new loop construct name is created for the target loop.

Example:
 DO 200 J = 1, N
 DO 100 I = 1, N
 IF (B(I,J).LT.0.) GO TO 100
 IF (A(I,J).EQ.0.) GO TO 300
 B(I,J) = 2.
 100 CONTINUE
 200 CONTINUE
 300 CONTINUE

Translation:
 L200: DO J = 1, N
 DO I = 1, N
 IF (B(I,J) < 0.) CYCLE
 IF (A(I,J) == 0.) EXIT L200
 B(I,J) = 2.
 END DO
 END DO L200

VAST/77to90 User’s Guide 5. Fortran 77 to Fortran 90 18

This transformation can be disabled with the -yx switch; it is on by default.

Computed GOTO to CASE
VAST/77to90 generates CASE statements in place of computed GOTOs where
possible. To be eligible for this transformation, computed GOTOs must have a
flow of control such that each label of the computed GOTO is accessed only
through the computed GOTO statement itself.

Example:
 GO TO (50, 50, 100) I
 B(I) = 2.
 GO TO 200
 50 CONTINUE
 X = 1.
 GO TO 200
 100 CONTINUE
 X = 2.
 200 CONTINUE

Translation:
 SELECT CASE (I)
 CASE DEFAULT
 B(I) = 2.
 GO TO 200
 CASE (1:2)
 X = 1.
 GO TO 200
 CASE (3)
 X = 2.
 END SELECT
 200 CONTINUE

This transformation can be disabled with the -ys switch.

Block IF to CASE
VAST/77to90 generates CASE statements in place of block IF statements where
possible. To be eligible for this transformation, a block IF must have at least three
branches. Each piece of the block IF must test on the same integer or character
variable or expression. An ELSE statement becomes the default part of the CASE
construct.

Example:
 IF (I.EQ.1) THEN
 X = 1.
 ELSE IF (I.EQ.2) THEN
 X = 2.
 ELSE IF (I.GT.6) THEN
 X = 3.
 ELSE
 X = 4.
 ENDIF

VAST/77to90 User’s Guide 5. Fortran 77 to Fortran 90 19

Translation:
 SELECT CASE (I)
 CASE (1)
 X = 1.
 CASE (2)
 X = 2.
 CASE (7:)
 X = 3.
 CASE DEFAULT
 X = 4.
 END SELECT

The transformation of block IFs to CASE statements can be disabled with the -yt
switch.

INCLUDEs to MODULEs
While INCLUDE statements are not a part of standard Fortran 77, many existing
Fortran 77 systems accept them. If your program uses INCLUDE statements to
group related global data, VAST/77to90 attempts to preserve this grouping as it
changes the INCLUDEs into MODULEs.

By default, VAST/77to90 attempts to create one MODULE for one INCLUDE.
All COMMON elements and parameters are grouped into a single MODULE
whose name is derived from the root name of the INCLUDE file. For example,
when VAST/77to90 encounters an INCLUDE file called include_name.inc, a
module named Vinclude_name is generated and its output is stored in
Vinclude_name.m. On subsequent uses of include_name.inc VAST/77to90
does not check to see if the INCLUDE file has changed since its first translation.
Therefore, whenever an INCLUDE file has been changed, the corresponding
Vinclude_name.m file should be deleted.

Example:
i1.inc:
 PARAMETER (N = 100)
 REAL A(N), B(N)
 COMMON /C1/ A
 COMMON /C2/ B

one.f:
 SUBROUTINE ONE
 INCLUDE 'i1.inc'
 DO I = 1, N
 A(I) = B(I)
 END DO
 END

Translation:
Vi1.m:
 MODULE VI1
 INTEGER, PARAMETER :: N = 100
 REAL, DIMENSION(N) :: A, B
 END MODULE VI1

VAST/77to90 User’s Guide 5. Fortran 77 to Fortran 90 20

Vone.f90:
 SUBROUTINE ONE
 USE VI1
 A = B
 END SUBROUTINE ONE

If you would rather leave the INCLUDEs and not have MODULEs, you can turn
off all generation of MODULEs with the -ym switch. If you want MODULEs but
do not need them to reflect the INCLUDE grouping, use the -yh switch.

COMMON
VAST/77to90 can change COMMON blocks into module files, or cut COMMON
blocks out into INCLUDE files, or leave existing COMMON blocks alone, at your
option.

COMMONs to MODULEs
By default, VAST/77to90 changes COMMON blocks into MODULEs. This can
be disabled with the -ym switch. This will also disable the generation of
MODULEs from INCLUDEs. If a COMMON block originates from an INCLUDE
statement, then it will be put into a MODULE as described in the previous
section; otherwise a new MODULE will be created for the COMMON.

The first time a COMMON is processed, two files are created: common_name.m
and common_name.vinc. These contain the MODULE and COMMON
information, respectively.

Any subsequent processing of the same COMMON block is then compared to the
common_name.vinc file that was created with the first processing. MODULEs
can be created as long as the COMMON block elements match in data type and
size. A MODULE cannot be created if the COMMON block being processed has
more elements than the first translation of the COMMON block into a MODULE.
However, it may have less elements. You should translate the largest instance of
the COMMON first, if you have a COMMON block with varying lengths.

It is also your responsibility to ensure that all or none of the occurrences of a
COMMON block in all routines are translated to a MODULE; if this is not the
case, then you should normalize your COMMON blocks or use the -ym switch to
disable translation to MODULEs. Obviously, global data for items in MODULEs
is not shared with global data in COMMON blocks, so the program must use all
one or all the other.

In cases where two occurrences of a COMMON block have different names or a
conflict with a local variable, VAST/77to90 uses the renaming and/or ONLY
capability of the USE statement when referencing the MODULE.

 SUBROUTINE ONE
 COMMON / ACOM / A, B, C
 ...
 END

VAST/77to90 User’s Guide 5. Fortran 77 to Fortran 90 21

 SUBROUTINE TWO
 COMMON / ACOM / AA, BB
 REAL C ! local c
 ...
 AA = 99
 BB = 100
 ...
 END

This is the MODULE file created by VAST/77to90 (named Vacom.m):

 MODULE VACOM
 REAL :: A, B, C
 END MODULE VACOM

This is the COMMON file created by VAST/77to90 to match up other uses of the
COMMON block before conversion to USE the MODULE (name acom.vinc):

 COMMON / ACOM / A, B, C

And this is the Fortran 90 output file:

 SUBROUTINE ONE
 USE VACOM
 ...
 END SUBROUTINE ONE

 SUBROUTINE TWO
 USE VACOM, ONLY: AA => A, BB => B
 REAL C ! local c
 ...
 AA = 99
 BB = 100
 ...
 END SUBROUTINE TWO

When a MODULE cannot be created for a COMMON, a warning message is
issued and the COMMON block reference remains in the translated output.

COMMONs to INCLUDEs
If you prefer, rather than MODULEs, VAST/77to90 can just create INCLUDE
files for each COMMON block. To request this, use -xi. This will turn off the
-xm switch (module creation); you may request COMMONs to be put into
INCLUDEs or changed into MODULEs, but not both.

Interface files

Creating interface files
If you specify the -xf switch, VAST/77to90 will create an interface file for each
routine it processes. This file will be called routine.inf where “routine” is the
subprogram name (interface files have extension .inf). You may wish to run

VAST/77to90 User’s Guide 5. Fortran 77 to Fortran 90 22

VAST/77to90 in an initial pass just to create interface files for all the routines,
and then run it again to include the interface files in the calling routine.

The creation of interface files allows the Fortran 90 compiler to check for
argument mismatches in type, number, or kind. This can diagnose many
otherwise hard to find programming errors.. It can also allow increased
optimization by the Fortran 90 compiler.

Consider this routine:

 SUBROUTINE DEMOINTF (A, B, C, S, N)
 PARAMETER (M=50)
 REAL A(N), B(M), C(100)
 COMMON /BLOCK/ X(M)
C
 DO I = 1, N
 A(I) = X(I)
 S = S + B(I)
 END DO
C
 PRINT *, S
C
 CALL SUB1 (S, A, N)
C
 RETURN
 END

The interface file generated with the -xf switch for this routine looks like:

 INTERFACE
!...Generated by VAST/77to90 1.02B 18:25 1/22/92
 SUBROUTINE DEMOINTF (A, B, C, S, N)
 INTEGER M
 PARAMETER (M = 50)
 REAL, DIMENSION(N), INTENT(OUT) :: A
 REAL, DIMENSION(M), INTENT(IN) :: B
 REAL, DIMENSION(100) :: C
!VAST/77TO90: Dummy argument C is not ref. in this routine.
 REAL, INTENT(INOUT) :: S
 INTEGER, INTENT(IN) :: N
!VAST... /BLOCK/ X(IN)
!VAST... Calls: SUB1
 END SUBROUTINE DEMOINTF
 END INTERFACE

Including interface files
If you specify the -x1 switch, VAST/77to90 will check to see if an interface file
exists when a subroutine call or function reference occurs in the input source
program. If an interface file does exist, VAST will generate an INCLUDE
statement to include the proper .inf file in the calling routine.

If you specify the -x2 switch, VAST/77to90 will assume that all interface files
are being created, and will generate an INCLUDE statement for each routine
called from the current routine, whether the interface file exists yet or not. To get

VAST/77to90 User’s Guide 5. Fortran 77 to Fortran 90 23

interface files created for all program units, and included in all calling routines,
you should use -xf2.

VAX-compatible structures
VAX-compatible structure definitions and structure references can be translated
into Fortran 90 derived type definitions and references, if you specify the -xj
switch.

 structure /stats/
 integer rbi(5), hrs(5)
 end structure
c
 structure /team/
 character*10 player
 integer number
 record /stats/ statistics
 end structure
c
 record /team/ roster(9)
c
 do i = 1, 9
 write(6,50) roster(i).player
 if (roster(i).player == ' ') go to 100
 do j = 1, 5
 write(6,60) roster(i).statistics.rbi(j)
 write(6,70) roster(i).statistics.hrs(j)
 end do
 100 continue
 end do
c
50 format(2x, ' player: ',a10)
60 format(2x, ' rbis: ',i3)
70 format(2x, ' hrs: ',i2)
 end

Translation:
 type stats
 sequence
 integer rbi(5)
 integer hrs(5)
 end type stats
!
 type team
 sequence
 character*10 player
 integer number
 type (stats) statistics
 end type team
!
 type (team) roster(9)
!
 do i = 1, 9
 write(6,50) roster(i) % player
 if (roster(i) % player == ' ') cycle
 do j = 1, 5
 write(6,60) roster(i)%statistics%rbi(j)
 write(6,70) roster(i)%statistics%hrs(j)

VAST/77to90 User’s Guide 5. Fortran 77 to Fortran 90 24

 end do
 endif
 end do iloop
c
50 format(2x, ' player: ',a10)
60 format(2x, ' rbis: ',i3)
70 format(2x, ' hrs: ',i2)
 end

VAST/77to90 also translates STRUCTUREs that contain UNION and MAP
statements. UNIONs allow several different kinds of data items to share the
same space in a STRUCTURE.

User directives
You may sometimes have information about the structure of a program and
about its data that is unavailable to VAST/77to90 through inspection of
individual program units. For this reason, a way for you to guide VAST/77to90
is supplied via user directives. User directives are treated as comments by Fortran
compilers, thus preserving code transportability.

Most of these directives relate to the translation of loops into array syntax, and
are only of interest if you are translating from Fortran 77 into Fortran 90.

VAST/77to90 user directives have the format:

 F
 R
 CVD$L directive
 b (this is a blank)

The C in column 1 makes the directive a comment for Fortran 77 compilers. (Use
an ! in column one instead for free format.) The VD$ flags this line as a directive
to VAST/77to90. Following the $ is an optional scope parameter. F stands for
"file" (meaning the directive applies until the end of all input files), R stands for
"routine" (directive applies until the end of the current routine), and L for "loop"
(directive applies to the next loop encountered). A blank following the $ is
equivalent to L. Some directives ignore the scope parameter. Directives affecting
IF loops must have R or F scope; directives with L scope apply only to DO loops.
The body of the directive begins after one or more blanks. Many directives can
be preceded by NO, thus effecting the reverse operation.

Examples:

CVD$ NODEPCHK (Ignore potential data dependencies
 in the next loop.)

CVD$R SKIP (Turn off translation into array syntax
 for the rest of this routine.)

CVD$F LIST (Turn on listing for rest of file(s).)

VAST/77to90 User’s Guide 5. Fortran 77 to Fortran 90 25

The full set of directives is summarized in Table 8.1. The "scope" entry is either I
for "immediate," meaning that the directive applies immediately; L, meaning that
it applies to the next loop; R, meaning that it applies to the whole routine; or
LRF, which means that any of the loop, routine, or file options can be used to
control the scope. A short description of each of these directives follows the
table. In addition, the more important directives are discussed in detail at the
appropriate points in the sections on optimization.

Table 8.1 -- VAST/77to90 directives

Directive Function Default Scope

SKIP Disable/enable translation. NOSKIP LRF
NOSKIP

SWITCH Pass new global switches. n/a I

NODEPCHK/
���J-,������� ����
�����$������������������� ��K�L�MON:P

LRF
DEPCHK data dependencies.

NOEQVCHK/
������� ��-0���A��=�����Q

EQVCHK LRF
EQVCHK EQUIVALENCEs to see if they

cause data dependencies.

PERMUTATION Pass list of integer arrays that n/a R
have no repeated values.

NOLIST/ Turn off/on listing. LIST I
LIST

SKIP/NOSKIP
SKIP disables translation of loops into Fortran 90 array syntax. NOSKIP only
toggles back from SKIP; it does not force translation. The -yv switch is
equivalent to SKIP with file scope. SKIP is discussed further in section 6.3.

NODEPCHK/DEPCHK
When elements of an array are modified within a loop, VAST/77to90 must
determine the exact storage relationship of these elements to all other references
to the array in the loop. This must be done to ensure that the references do not
overlap, and thus can safely be translated to array syntax. When the relationships
cannot be determined, VAST issues a potential dependency diagnostic. The
NODEPCHK directive asserts that all such potentially recursive relationships are
in fact not recursive. It does not, however, force the optimization of operations
that are unambiguously directive is used only to toggle back to the default state.
The -yp switch is equivalent to NODEPCHK with file scope.

VAST/77to90 User’s Guide 5. Fortran 77 to Fortran 90 26

NOEQVCHK/EQVCHK
NOEQVCHK directs VAST/77to90 to ignore relationships between variables
caused by EQUIVALENCE statements, when examining the data dependencies
in a loop. The -ye switch is equivalent to NOEQVCHK with file scope.

PERMUTATION
The PERMUTATION directive declares an integer array to have no repeated
values. This is useful when the integer array is used as a subscript for another
array (indirect addressing). If it is known that the integer array is used merely to
permute the elements of the subscripted array, then it can often be determined
that no feedback exists with that array reference.

NOLIST/LIST
Listing of the input source can be selectively suppressed with the NOLIST/LIST
directive pair. If NOLIST (or the -q l switch) is in force when the END
statement is encountered, the rest of the listing (messages, translated source,
summaries) is suppressed unless specifically enabled via -p switches. SWITCH
directive Set (or change) global switches. Described in section 5.1.1.

Specifying directives on invocation
The -D invocation parameter can be used to specify directives without inserting
them in the actual input source code. The format is:

 -D directive[:routine,routine,...]

Where directive is any VAST/77to90 directive, and routine is a routine in
the input source to which the directive is to be applied. If no routine names are
supplied, the directive applies to the entire input source. Multiple -D parameters
can be supplied. A -F command line option can be used to redirect command
line processing to a file of -D commands.

Alternate return
Example:
 CALL DOWORK (A, B, N, *800)
 ...
 800 CALL ERROR (5)

Translation:
 CALL DOWORK (A, B, N, J1)
 IF (J1 .EQ. 1) GO TO 800
 ...

Statement functions
Statement functions, are expected to be designated as obsolescent in Fortran 95;
they are transformed into internal procedures by VAST/77to90.

VAST/77to90 User’s Guide 5. Fortran 77 to Fortran 90 27

Example:
 subroutine dowork (s)
 xfunc(a) = a + 1.0/a
 print *, xfunc(s)
 ...

Translation:
 subroutine dowork (s)
 ...
 print *, xfunc(s)
 ...
 contains
 real function xfunc(a)
 real a
 xfunc = a + 1.0/a
 return
 end function xfunc

Other obsolescent features
Other constructs that have been designated “obsolescent” in Fortran 90 but are
not transformed by VAST/77to90 include:

• PAUSE statement: replace this with appropriate I/O statements.
• ASSIGN and assigned GOTO: replace this with internal procedures or

regular GOTOs or other control structures.
• Hollerith data: replace with character strings. (May be converted by newer

versions of VAST/77to90.)

VAST/77to90 User’s Guide 6. Array Syntax 28

6. Array Syntax
+�=��� 4 5�����������:��;����������� 8
�������$����?�������;���� 8��?#&('�),+R-,/�/�����1�2�� 4����3�# 5�����������:��?�I����������:/�/
loops into Fortran 90 array syntax.

There are two levels of translation for array syntax; the default level, which tries
to translate only loops that will be fairly clean after translation, and the
aggressive level, which requests maximum translation of loops regardless of the
appearance of the output.

If code clarity is your goal, leave the setting at the default. If array syntax has
performance implications for your target system (for instance, massively parallel
processors) then you may want to use the -xr switch to turn on aggressive array
syntax translation.

SKIP/NOSKIP directives
You can enable or disable array syntax translaton via the SKIP and NOSKIP
directives. By default, translation is on. Translation to array syntax may also be
disabled completely by the -yv option switch.

Loop types
Both DO and IF loops are considered for translation to array syntax.

IF loops are converted into DO loops under certain conditions. To be convertible:
• The loop must have a single entrance and a single exit.
• The iteration count for the loop must be determinable at execution time

before the loop is entered.
• The IF loop may contain other loops.

The -yl switch disables conversion of IF loops to DO loops. All directives (such
as NODEPCHK) affecting IF loops must have routine or file scope.

VAST/77to90 analyzes entire nests of DO loops (including converted IF loops)
for possible translation to array syntax.

Allowed statements
Statements that may appear in an optimizable loop are listed below.

• Assignment
 A(I) = B(I) + C(I)

• Conditional assignment
 IF (D(I).LT.0) A(I) = B(I) + C(I)

VAST/77to90 User’s Guide 6. Array Syntax 29

• GO TO label (label must be forward)

• GO TO (label1,label2,...) expression
 (four or less labels; labels must be forward)

• IF () GO TO label (label must be forward)

• IF () THEN

• ELSEIF () THEN

• ELSE

• ENDIF

• Arithmetic IF (all labels must be forward)
 IF (IJK) 10,20,30

• CALL (handled only upon user direction - either inlined or split out.)

• Comment

• CONTINUE

• FORMAT

• DATA

The appearance of any other statement type in a loop causes that loop to be
rejected for translation into array syntax. A diagnostic message points out the
offending statement in the listing.

 DO 1 I = 1,N (Not translated.)
 A(I) = B(I)*C(I)
 WRITE (6) A(I),I (This statement is not translated.)
 1 CONTINUE

Statement labels may appear wherever legal.

Loops containing character variables or character constants are not translated to
array syntax.

Understanding loop variables
Understanding loop translation is made possible by understanding the
translatable and nontranslatable uses of the variables in a loop. Every variable in
a translatable loop can be categorized as one of three things: scalar, index, or
vector. A scalar is a single value that does not change through all the iterations
of the loop. An index is an integer quantity that is incremented by a constant
amount each pass through the loop. A vector is a range of memory locations,

VAST/77to90 User’s Guide 6. Array Syntax 30

with a constant skip or stride between consecutive elements. Here is an example
of each of these:

Loop:

 DO 10 I = 1,N
 J = J+1
 A(J) = X
 10 CONTINUE

Classification:

 I,J: index variables
 A(J): vector
 X: scalar

The following sections examine each of these kinds of variables in detail, and
explore how their different uses can allow a loop to translate, or not.

Indexing
This section examines the various ways arrays can be indexed in loops, and
describes how they are handled by VAST/77to90. A vector index is an integer
variable which is incremented by a constant amount each pass through a loop. A
vector index may be defined either in terms of a previously defined vector index
or in terms of its own previous value. The loop below demonstrates some types
of vector indexes that are handled by VAST/77to90.

Example:
 DO 3210 I = 1,50 (Loop index is always a vector index.)
 J = J+1 (Recurrent vector index definition.)
 K = I*2+3 (V.I. defined in terms of another V.I.)
 R(I) = B(K)*C(M)+A(J)
 3210 M = M-4 (Recurrent vector index definition.)

Vector indexes in this loop: I, J, K, M

More specifically, a statement setting up a vector index must be transformable
into one of these two forms:

 Form 1: (vector index1) = (vector index1) + or - (invariant expression)

 Form 2: (vector index2) = (vector index1) * (invariant expression)
 + or - (invariant expression)

where an invariant expression is an expression whose value is constant for all
passes of the DO loop.

The loop below contains examples of some statements that cannot be changed
into one of the forms just presented and thus do not define vector indexes.

VAST/77to90 User’s Guide 6. Array Syntax 31

Example:
 DO 3218 I = 1,N
 J = J*2 (Not a vector index.)
 K = I/4 (Not a vector index.)
 M = I*I (Not a vector index.)
 3218 A(J) = B(K)*C(M)

For an array to be directly accessed as a vector, it must have at least one subscript
which is transformable into the form:

 (vector index) * (invariant expression) + or - (invariant expression)

Example:
 DO 3240 I = 1,N (Optimized)
 3240 A(5*I) = B(I-6)+C((I-1)*N+M)

Translation:
 A(5:5*N:5) = B(-5:N-6) + C(M:N*(N-1)+M):N)

Where necessary, VAST/77to90 sets final values of vector indexes to ensure that
all variables modified in the original loop are given the same values in the
translated code. Do not put index variables in COMMON, or they may be
unecessarily saved even when the value may not be needed.

Indirect AddressingS =����:���:��$���@�� 8 H;�C� 5�%$�������� 8���� 5����?����:���$��@T$��?���$�����%�(BU����=:��V	���%����9��������W,G���=��
array is said to be indirectly addressed or to have a vector subscript. The array
syntax version of this construct looks very similar to the scalar version.

Example:
 DO 3260 I = 1,N
 3260 A(IA(I)) = B(IB(I)*6-IABS(IC(I)))

Translation:
 A(IA(:N)) = B(IB(:N)*6-IABS(IC(:N)))

Such array references will be translated automatically only if they obey these
rules:

• An array which is indirectly stored into (scattered) may not appear elsewhere
in the loop.

• The vector subscript of this array must have no repeated elements. (This
information can be passed to VAST/77to90 with the PERMUTATION
directive.)

• An array which is indirectly read from (gathered) may not be stored into
within the loop.

In the example below, the appearances of B violate the first rule.
DO 3265 I = 1,N
 B(IB(I)) = B(IB(I)) + A(I)
 3265 CONTINUE

VAST/77to90 User’s Guide 6. Array Syntax 32

These rules may be overridden with the NODEPCHK user directive (and in some
cases, the PERMUTATION directive), if the user knows that the indexing is non-
recursive.

The use of a vector index outside of array subscripts is translated by
VAST/77to90 into a reference to an array constructor, which creates an array of
values spanning the range of the index.

Example:
 DO 3270 I = 1,N
 3270 A(I) = COS(B(I)*I)

Translation:
 A(:N) = COS(B(:N) * (/ (I,I=1,N) /)

Storing into scalars

Scalar variables are unchanging single locations in memory, such as a simple
variable (X). Array references whose subscript values are invariant in a loop
(and thus represent a single location through all passes of the loop) are called
invariant array references or array constants. Invariant array references are treated
similarly to simple scalar variables by VAST/77to90.

Scalar variables that are modified in a loop can sometimes inhibit translation.
Scalar variables which are not modified in the loop do not inhibit translation.
This section discusses the transformations used to deal with the storing of values
into non-index scalars within a loop.

Scalar promotion
When a scalar is set to an array-valued expression, that scalar must be promoted to
an array. This requires the introduction of temporary arrays which replace the
promoted scalars. (This is done only when the aggressive array syntax switch is
enabled.)

VAST/77to90 uses static local arrays for temporaries when the size is known at
compile time; otherwise it uses allocatable or automatic arrays.

Example:
 SUBROUTINE SOLVE (A, B, N)
 ...
 DO 3300 I = 1, N
 S = 1./A(I) (S must be promoted.)
 B(I) = SQRT(S) + S
 3320 CONTINUE

VAST/77to90 User’s Guide 6. Array Syntax 33

Translation:
 REAL, ALLOCATABLE :: S1U(:)
 ...
 ALLOCATE (S1U(N))
 S1U = 1./A(:N)
 B(:N) = SQRT(S1U) + S1U
 DEALLOCATE (S1U)

VAST/77to90 saves the last value of a promoted scalar (the value the scalar
would have had on exiting the original loop) only when it determines that the
value may be needed following execution of the loop.

Scalar folding
In certain cases, VAST/77to90 will eliminate a promoted scalar by forward
substitution. VAST/77to90 folds a scalar only when it eliminates an array
temporary and does not add operations. (I.e. the scalar is set to a single array, as
in the example below, or the scalar is used only once.)

Example:
 DO 3330 I = 1, N
 T = A(I)
 B(I) = T + 1./T
 3320 CONTINUE

Translation:
 B(:N) = A(:N) + 1./A(:N) (T has been eliminated.)

Carry-Around Scalars
Scalars which may be used before they are defined in a loop are called carry-
around scalars. They are usually recursive. All references to these variables are
collected in a scalar loop and split out from the rest of the calculation if possible.

Example:
 DO 3313 I = 1,N (Not translated.)
 A(I) = S + 1/S (S is "carried around".)
 B(I) = C(I) - A(I) + S
 3313 S = B(I) + D(I)

Reduction Functions
A reduction function is an operation which condenses array operands into one
scalar value which characterizes some aspect of the input arrays.

The reduction functions translated by VAST/77to90 are:

Operation type Translated to

S = S+A(I) SUM
S = S*A(I) PRODUCT
S = AMAX1(S,A(I)) MAXVAL
S = AMIN1(S,A(I)) MINVAL
S = S+A(I)*B(I) DOT_PRODUCT

VAST/77to90 User’s Guide 6. Array Syntax 34

index of max.element MAXLOC
index of min. element MINLOC
IF (L(I)) N=N+1 COUNT
L = L .OR. LA(I) ANY
L = L .AND. LA(I) ALL

These operations are recognized in general forms.

Example:
 DO 10 I = 1, N
 10 S = A(I) + SQRT(B(I)) + S - (C(I)*D(I))

Translation:
 S = S + SUM(A(:N)+SQRT(B(:N))-C(:N)*D(:N))

VAST/77to90 traces the program flow to find and eliminate initializations for
sum and dot product reductions, where possible.

Example:
 TOT = 0.0E0
 DO 110 J = M,N
 TOT = TOT + VAL(J)
 110 CONTINUE

Translation:
 TOT = SUM(VAL(M:N))

VAST/77to90 handles conditional reduction functions in loops by using the
MASK keyword. COUNT, ANY, and ALL are conditional by definition.

Example:
 DO 10 I = 1,N
 IF (A(I) .GT. 0) S = S + B(I)
 IF (B(I) .GE. D(I)) X = AMIN1(X,E(I))
 IF (A(I) .GT. B(I)) K = K + 1
 10 CONTINUE

Translation:
 S = S + SUM(B(:N), MASK=A(:N).GT.0)
 X = AMIN1(X,MINVAL(E(:N), MASK=B(:N).GE.D(:N)))
 K = K + COUNT(A(:N).GT.B(:N))

VAST/77to90 transforms loops that look for the index of the minimum or
maximum element in an array into calls to appropriate Fortran 90 intrinsics
(MAXLOC, MINLOC).

Example:
 DO 100 I = 1, N
 IF (A(I).GT.AMX) THEN
 AMX = A(I)
 IMAX = I
 ENDIF
 100 CONTINUE

VAST/77to90 User’s Guide 6. Array Syntax 35

Translation:
 INTEGER I1X(1)
 ...
 I1X = MAXLOC(A)
 IF (A(I1X(1)) .GT. AMX) THEN
 AMX = A(I1X(1))
 IMAX = I1X(1)
 ENDIF

Conditional operations
This section describes the varieties of conditional statements in loops and how
VAST/77to90 deals with them.

VAST/77to90 can translate to array syntax loops containing any combination of
conditional assignments, conditional and unconditional forward branching
(including arithmetic IFs and computed GOTOs with four or less labels), and
block IFs. Because of compilation speed and size restrictions, there is a limit of
six simultaneously active conditions. Forward transfers do not have to be
properly nested; VAST/77to90 converts all forward transfers into structured IF
blocks.

The following conditional statements are not translated to array syntax:
• Computed GOTOs with more than four labels.
• ASSIGNed GOTOs.
• Backward transfers.
• Transfers out of the loop.

There are two basic types of conditions, as illustrated in the loops below. The
following loop shows a loop independent conditional assignment.
Example:
 DO 1 I = 1,100
 B(I) = B(I)+1.
 1 IF (N.EQ.1) A(I) = B(I)+2.

Translation:
 IF (N == 1) THEN
 B = B + 1.
 A = B + 2.
 ELSE
 B = B + 1.
 ENDIF

The IF clause (N.EQ.1) does not depend on the loop index at all; it remains the
same for all iterations of the loop. Thus, we know whether or not N is equal to 1
before the loop is executed.

The other kind of condition is shown in the loop below.

Example:
 DO 2 I = 1,100
 2 IF (C(I).LT.0) D(I) = E(I)+F(I)

VAST/77to90 User’s Guide 6. Array Syntax 36

Translation:
 WHERE (C.LT.0) D = E + F

It is called loop dependent because the IF clause (C(I).LT.0) can be true on some
loop iterations and false on others. Sometimes we want to do the calculation
(add E(I) to F(I)) and sometimes we do not. Loop dependent conditions are
turned into WHERE and ELSEWHERE statements when code is translated into
Fortran 90 array syntax.

The %CD field in the loop summary of the VAST/77to90 listing summarizes
what percentage of the operations in the translated loop are loop-dependent
conditionals. A value close to 100 in this field means that the loop is almost
completely conditional, and may run slower than the scalar original if the
condition is sparse (rarely true) depending on how the target system handles
WHERE statements.

The loop below shows a loop-index-dependent conditional assignment.
VAST/77to90 eliminates such conditions by adjusting the limits of the array
syntax operation.

Example:
 DO 1013 I = 1,100
 IF (I.NE.J) A(I) = B(I) + C(I)
 1013 CONTINUE

Translation:
 IF (J-1.GE.0 .AND. J-1.LE.99) THEN
 A(1:J-1) = B(1:J-1) + C(1:J-1)
 A(J+1:100) = B(J+1:100) + C(J+1:100)
 ELSE
 A(1:100) = B(1:100) + C(1:100)
 ENDIF

The IF (J-1.GE.0...) test determines whether J is in the range of the DO
loop index. If so, the operation is performed up to the J-1 element and then from
the J+1 element to N. If J is not in the range of the DO loop index, the operation
is performed on all elements.

Functions and Subroutines
In Fortran 90, most intrinsic functions can be applied to array arguments as well
as scalars. Thus, references to standard intrinsics do not inhibit translation to
array syntax.

Example:
 DO 3520 I = 1,N
 3520 A(I) = AMAX1(SIN(SQRT(B(I)+C(I))),D(I))

Translation:
 A(:N) = AMAX1(SIN(SQRT(B(:N)+C(:N))),D(:N))

VAST/77to90 User’s Guide 6. Array Syntax 37

Outer Loops
Within a nest of loops, VAST/77to90 examines all loops for possible translation
to array syntax; more than one loop in the same nest may be translated. To be
translatable, loops do not need to be tightly nested, and translatable outer loops
can have multiple inner loops. When outer loops are being translated, data
dependency messages include the label and the index of the loop they refer to,
making it easier to determine the exact location of the dependency.

Conformability
Fortran 90 array syntax requires that in any one expression array references with
array subscripts agree in number (rank) and size (extent) of array dimensions; if
this is true, they are said to conform.

Fortran 90 transformational instrinsics can be used in most cases to make non-
conforming array references conform. The primary transformational intrinsics
VAST/77to90 uses are SPREAD (for array references which have "missing"
dimensions) and TRANSPOSE and RESHAPE (for array references whose
vectorized dimensions are not in the required order). These intrinsics are
generated only when aggressive array syntax translation is requested (-xr).

Example:
 DO 3708 J = 1,50
 DO 3708 I = 1,20
 3708 A(I,J) = A(I,J)+B(I)*C(J) (B lacks J, C lacks I.)

Translation (with -xr):
 A(:20,:50) = A(:20,:50) +
 1 SPREAD(B(1:20),DIM=2,NCOPIES=50)
 2 SPREAD(C(1:50),DIM=1,NCOPIES=20)

Example:
 DO 3709 J = 1,M
 DO 3709 I = 1,N
 3709 A(I,J) = 2.0*B(J,I) XZY	[�\�] ^`_�[�a0b"c0d�^ _fe g h�[�\�i�hZg�eZj k
Translation:
 A(:N,:M) = TRANSPOSE(2.0*B(:M,:N))

The next example shows some reduction operations on various dimensions.
These are handled with the DIM= keyword on the reductions themselves.

Example:
C
 DO 200 J=1,M
 DO 200 I=1,N
 200 S=S+A(I,J)+B(I,J)
C
 DO 300 J=1,M
 DO 300 I=1,N
 300 S=S+A(I,J)+B(J,I)
C
 DO 400 J=1,M

VAST/77to90 User’s Guide 6. Array Syntax 38

 DO 400 I=1,N
 400 D(I)=D(I)+A(I,J)
C
 DO 420 J=1,M
 DO 420 I=1,N
 420 D(J)=D(J)+A(I,J)

Translation:
 !
 S = S + SUM(A(:N,:M)+B(:N,:M))
 !
 S = S + SUM(A(:N,:M)+TRANSPOSE(B(:M,:N)))
 !
 D(:N) = D(:N) + SUM(A(:N,:M), DIM=2)
 !
 D(:M) = D(:M) + SUM(A(:N,:M), DIM=1)

A final example shows some transformational functions used to force
conformability on the arrays. The array A is RESHAPEd and then SPREAD to
match the shape of array B. (This example is translated only if the -xr switch is
specified.)

Example:
 DO 10 K = 1,N
 DO 10 J = 1,M
 DO 10 I2 = 1,L2
 DO 10 I1 = 1,L1
 B(I1,I2,J,K) = A(K,I2,I1)
 10 CONTINUE

Translation:
 B(:L1,:L2,:M,:N) = SPREAD(RESHAPE(
 1 SOURCE=A(:N,:L2,:L1),SHAPE=(/L1,L2,N/),
 1 ORDER=(/3,2,1/)),DIM=3,NCOPIES=M)

Outer Loop Inhibitors
There are several constructs which can prevent translation of an outer loop. For
instance, when the iteration count of an inner loop is not constant for all passes of
the outer loop, then the outer loop is not translated (the inner loops are still
translated if possible). Below, the iteration count for both the 100 loop and the
150 loop change with each pass of the outer loop. Thus the 200 loop cannot be
translated.

 DO 200 J = 1,N (Not Translated.)
 DO 100 I = 1,J (Translated.)
 100 A(J,I) = A(J,I)*B(J,I)
 DO 150 I = 1,IN(J) (Translated.)
 150 C(J,I) = 0.
 200 CONTINUE

Sometimes recursion along the inner loop also prevents translation of the outer
loop. For example, the DO 400 loop below has feedback on the array A along the
inner loop, and also cannot safely be translated along the DO 500 loop.

VAST/77to90 User’s Guide 6. Array Syntax 39

 DO 500 J = 1,M (Not Translated.)
 DO 400 I = 1,N (Not Translated.)
 400 A(I+1) = A(I) * B(I,J)
 500 CONTINUE

When an inner loop is executed conditionally, the outer loop is not translated. In
the example below, the DO 700 loop is not translated since the DO 600 loop
inside is executed conditionally.

 DO 700 I = 1,N (Not Translated.)
 IF (A(I).GT.0) THEN
 DO 600 J = 1,N (Translated.)
 600 B(I,J) = A(I)*J
 ENDIF
 700 CONTINUE

Finally, loops which do no indexing are not translated. This sometimes occurs
when an outer loop is being used for timing purposes. In the example below, no
use is made of the index I or any other index defined for the outer loop DO 900.

 DO 900 I = 1,N (Not Translated.)
 DO 800 J = 1,M (Translated.)
 800 A(J) = B(J) + C(J)
 900 CONTINUE

Matrix Multiply Recognition
When the -xr switch is enabled (aggressive array syntax generation),
VAST/77to90 recognizes most common forms of matrix multiplication and
vector-matrix multiplication and converts them to transformational intrinsic
function calls (MATMUL, and sometimes TRANSPOSE).

Example:
 DO 10 I = 1, N
 DO 10 J = 1, M
 DO 10 K = 1, L
 10 A(I,J) = A(I,J) + B(I,K)*C(K,J)

Translation:
 A(:N,:M) = A(:N,:M) + MATMUL(B(:N,:L),C(:L,:M))

If the result array is initialized within the loop nest, the addition will be
suppressed.

Example:
 DO 20 I = 1, N
 DO 21 J = 1, M
 21 A(I,J) = 0.0
 DO 20 K = 1, L
 DO 20 J = 1, M
 20 A(I,J) = A(I,J) + B(I,K)*C(K,J)

VAST/77to90 User’s Guide 6. Array Syntax 40

Translation:
 A(:N,:M) = MATMUL(B(:N,:L),C(:L,:M))

One or both of the operands may also be transposed.

Example:
 DO 35 NMAT = 1, 100
 DO 30 I = 1, N
 DO 30 J = 1, M
 A(I,J,NMAT) = 0.
 DO 30 K = 1, L
 30 A(I,J,NMAT) = A(I,J,NMAT) + B(K,I)*C(K,J,NMAT)
 35 CONTINUE

Translation:
 DO 35 NMAT = 1, 100
 A(:N,:M,NMAT) = MATMUL(TRANSPOSE(B(:L,:N)),
 1 C(:L,:M,NMAT)
 35 CONTINUE

VAST/77to90 also converts matrix-vector multiplication into MATMUL intrinsic
calls.

Loop Rerolling
A common technique used to aid performance on some computers is to "unroll"
loops. This does not look good in Fortran 90 array syntax, and such loops are
rerolled by VAST/77to90.

A rerollable loop must have an explicit constant non-unit increment specified on
the DO statement. It must contain no data dependencies. An unrolled
summation or dot product must add each operand to the reduction scalar in
index order. The number of assignments in an unrolled assignment must be the
same as the increment on the DO loop, and each assignment must do the next
computation in index order. Below are two examples of loops that VAST/77to90
rerolls.

Example:
 DO 100 I = 1, 997, 3
 A(I) = B(I) + C(I)
 A(I+1) = B(I+1) + C(I+1)
 A(I+2) = B(I+2) + C(I+2)
 100 CONTINUE

Translation:
 A(:999) = B(:999) + C(:999)

Example:
 DO 200 I = 1, N, 5
 S = S + A(I)*B(I)
 1 + A(I+1)*B(I+1) + A(I+2)*B(I+2)
 2 + A(I+3)*B(I+3) + A(I+4)*B(I+4)
 20 CONTINUE

VAST/77to90 User’s Guide 6. Array Syntax 41

Translation:
 S = S + DOT_PRODUCT(A(:(N+4)/5)*5,B(:(N+4)/5)*5)

Data Dependency Analysis
VAST/77to90 ensures that the code transformed into array syntax gives the same
answers as the original. For certain loops, straightforward translation would
result (or could result) in incorrect answers. A loop in which results from one
loop pass feed back into a future pass of the same loop is said to have a data
dependency conflict and cannot be completely translated. (Such a loop is also said
to be recursive" or to contain recurrences.) In these cases, VAST/77to90 detects the
problem, reports it to the user, and leaves the loop in its original form.

In certain cases, VAST/77to90 can determine that the problem is limited to a
subset of the operations in the loop, and if the agressive array syntax switch (-
xr) is on, it will cut the loop into translated and non-translated sub-loops. The
"%DP" field in the loop summary measures how much of the loop is dependent,
i.e. left untranslated. If VAST/77to90 determines that more than a certain
percentage of a loop is dependent, it will not translate the loop at all. (The exact
percentage depends on various other factors.)

VAST/77to90 examines EQUIVALENCE statements to see if they may be
masking recursion, and suppresses any potentially unsafe transformations.

Data Dependency Examples
Figure 6.1 demonstrates the concept of data dependency. Four similar loops are
displayed. For each loop, the sequences of instructions that would be executed in
scalar mode (one at a time) and in array syntax mode (whole arrays at a time) are
also shown. Lower case variables (like "a") stand for new values set in the
current loop, while upper case variables (such as "A") stand for old values that
were set before the loop started.

It is easy to see that the scalar and array syntax sequences for Figure 6.1A are not
the same; the array syntax version uses only old values of A, while the scalar
version uses new ones. VAST/77to90 detects that this loop is not safe to
translate, puts out a data dependency conflict message, and leaves the loop in its
original form (the loop is "rejected"). In contrast, the scalar and array sequences
for Figure 6.1B are identical; no feedback of results from one loop pass to another
is occurring here. VAST/77to90 recognizes that this loop is safe to translate and
does so.

+�=��� 5�F��;����������:�� 4���� H 8��������l���:I���
�;�$��m�! n�MOo3=#�������=���;� 5����?���=#�(V	��$����C�����pqP(pr���U'��
subscript makes the proper scalar sequence impossible to determine at compile
time. If K is 1, the loop functions like the recursive loop in Figure 6.1A; if K is -1,
the loop is safe to translate, as 6.1B was. When it is not possible for VAST/77to90
to tell if a loop is recursive or not, the loop is said to have ambiguous subscripting.
Often the user knows that a loop (or perhaps all the loops in a routine or
program) is not recursive, even though VAST/77to90 cannot tell, as in 6.1C.

VAST/77to90 User’s Guide 6. Array Syntax 42

In these cases, the user can assume responsibility and direct VAST/77to90 to
ignore potential recursions, via the NODEPCHK directive.

Figure 6.1D shows the same loop as in Figure 6.1A, but with a DO increment of 2
instead of (default) 1. VAST/77to90 detects that the loop is now not recursive,
because no results feed back into the calculation. These four similar examples
point out the sensitivity of data dependency analysis to offset and stride values of
arrays which appear on both sides of the equal sign within a loop.

Figure 6.1 Data Dependency Analysis

 a: new value of A A: old value of A
 ----------------------------6.1A---------------------------------
 ORIGINAL LOOP: ARRAY SEQUENCE CORRECT?
 DO 71 I = 2,N No. We are not using updated
 71 A(I+1) = A(I)*B(I)+C(I) values of A.

 SCALAR SEQUENCE: ARRAY SEQUENCE:
 a(3) = A(2)*B(2)+C(2) a(3) = A(2)*B(2)+C(2)
 a(4) = a(3)*B(3)+C(3) a(4) = A(3)*B(3)+C(3)
 a(5) = a(4)*B(4)+C(4) a(5) = A(4)*B(4)+C(4)
 a(6) = a(5)*B(5)+C(5) a(6) = A(5)*B(5)+C(5)
 : :
 ----------------------------6.1B---------------------------------
 ORIGINAL LOOP: ARRAY SEQUENCE CORRECT?
 DO 72 I = 2,N Yes. Sequence is identical.
 72 A(I-1) = A(I)*B(I)+C(I)

 SCALAR SEQUENCE: ARRAY SEQUENCE:
 a(1) = A(2)*B(2)+C(2) a(1) = A(2)*B(2)+C(2)
 a(2) = A(3)*B(3)+C(3) a(2) = A(3)*B(3)+C(3)
 a(3) = A(4)*B(4)+C(4) a(3) = A(4)*B(4)+C(4)
 a(4) = A(5)*B(5)+C(5) a(4) = A(5)*B(5)+C(5)
 : :
 ----------------------------6.1C---------------------------------
 ORIGINAL LOOP: ARRAY SEQUENCE CORRECT?
 DO 73 I = 2,N ? Depends on K. Here, if 0<K<N
 73 A(I+K) = A(I)*B(I)+C(I) then array is not right.

 SCALAR SEQUENCE: ARRAY SEQUENCE:
 a(2+K) = A(2)*B(2)+C(2) a(2+K) = A(2)*B(2)+C(2)
 a(3+K) = ... a(3+K) = A(3)*B(3)+C(3)
 : a(4+K) = A(4)*B(4)+C(4)
 Can't show more of sequence a(5+K) = A(5)*B(5)+C(5)
 because we don't know where :
 A is being changed. :
 ----------------------------6.1D---------------------------------
 ORIGINAL LOOP: ARRAY SEQUENCE CORRECT?
 DO 74 I = 2,N,2 Yes (Because stride of 2 makes
 74 A(I+1) = A(I)*B(I)+C(I) operation non-recursive)

 SCALAR SEQUENCE: ARRAY SEQUENCE:
 a(3) = A(2)*B(2)+C(2) a(3) = A(2)*B(2)+C(2)
 a(5) = A(4)*B(4)+C(4) a(5) = A(4)*B(4)+C(4)
 a(7) = A(6)*B(6)+C(6) a(7) = A(6)*B(6)+C(6)
 a(9) = A(8)*B(8)+C(8) a(9) = A(8)*B(8)+C(8)
 : :

VAST/77to90 User’s Guide 6. Array Syntax 43

Data dependency analysis must extend to more than just single line loops, of
course; in the loop shown below, the reference to A at the top of the loop
conflicts with the store into A at the bottom. VAST/77to90 prints a message to
this effect and does not translate the loop.

 DO 1 I = 2,N (Not translated.)
 TEMP = A(I-1)+A(I-2)
 B(I) = TEMP+3.0+A(I)
 1 A(I) = SQRT(B(I))-5.0

VAST/77to90 uses information from other array dimensions as part of its
analysis where possible. The loop in the following example is translated because
VAST/77to90 can see that the second dimension indices of the A references can
never be equal (since N is not equal to N+1) and thus there is no recursion (The
references to A are to two totally different column vectors - they do not share
data).

 DO 2 I = 2,N (translated.)
 2 A(I,N) = A(I-1,N+1)*B(I)+C(I)

It is possible for array constants (array references with invariant subscripts) to
conflict with "vector" array references. Because of this, the following cannot be
safely converted into array syntax operations (J may be between 2 and N):

 SUBROUTINE UNSAFE (A, B, N, J)
 REAL A(*), B(*)
 DO 3 I = 2,N (Not translated.)
 3 A(I) = A(J)-B(I)

Reference Reordering
Sometimes a loop does not contain true feedback but still cannot be translated as-
is because of the order in which array elements are referenced. In cases like the
example below, if agressive array syntax is requested, VAST/77to90 creates a
temporary to hold the "old" elements of an array so that they are still available
when needed later. This allows the loop to be safely translated.

Example:
 DO 40 I=1,N
 A(I) = B(I)+C(I)+D(I)
 D(I) = E(I)+A(I+1)
 40 CONTINUE

Translation:
 REAL A1U(N)
 A1U = A(2:N+1) (Temporary to hold values.)
 A(:N) = B(:N) + C(:N) + D(:N)
 D(:N) = E(:N) + A1U

VAST/77to90 also reorders entire statements to eliminate dependencies.

VAST/77to90 User’s Guide 6. Array Syntax 44

Ambiguous Subscript Resolution
When it is not possible with information contained in the loop to determine the
storage relationship between two references to an array, the situation is called
ambiguous subscripting or potential feedback. In these situations, VAST/77to90
looks for statements outside of the loop that may provide information which
clears up the ambiguity. In the loop below, VAST/77to90 finds the assignment to
N2 which makes it clear that N1 is never equal to N2, and thus there is no
feedback.

 N2=N1+1
 DO 100 I=1,N (translated.)
 100 A(I+1,N1) = A(I,N2)*B(I)

Loop peeling
When data dependency is caused by one or a few iterations at one end of the DO
index range, loop peeling can remove the dependency.

Example:
 DO 100 I = 1, 30
 A(I) = A(1) + B(I)
 100 CONTINUE

Translation:
 A(1) = A(1) + B(1)
 A(2:30) = A(1) + B(2:30)

If the first iteration is peeled from the loop (executed as a single scalar statement),
the rest of the loop iterations can be optimized. Up to three iterations can be
peeled from the beginning or end of a loop. The loop may be of variable length,
but the stride (increment) must be a constant.

NODEPCHK -- declaring non-recursion
As mentioned previously, the NODEPCHK directive gives the user the ability to
direct VAST/77to90 to ignore potential data dependencies in a loop. This
capability should be used only when the user knows that no real recursion exists.
When it detects potential feedback, VAST/77to90 issues a message asking the
user to apply this directive if the loop is in fact not recursive.

s������ 8������QT���	 5��V�����3����W,��67������ 4��?� 5�F��;����������� 8B:=�����(��=���;� 5��967��@ABU�3�#�	���t���� 5��C����
data dependency checking.

In the following loop, VAST/77to90 plays it safe and does not translate, but it is
clear to the programmer that K will always be less than or equal to zero, and thus
the loop is never recursive:

 K = -ABS(M) (Not translated.)
 DO 1 I = 1,N
 1 A(I+K) = A(I)+B(I)

Below, a CVD$ NODEPCHK directive is used to allow the loop to translate.

VAST/77to90 User’s Guide 6. Array Syntax 45

 K = -ABS(M)
CVD$ NODEPCHK (translated.)
 DO 2 I = 1,N
 2 A(I+K) = A(I)+B(I)

In this loop, VAST/77to90 cannot be sure that N1 does not equal N2 and thus
rejects the loop:

 SUBROUTINE MOVE (A, B, N, N1, N2)
 REAL A(N,*), B(*)
 DO 3 I = 1,N (Not translated.)
 3 A(I+1,N1) = A(I,N2)+B(I)

If the user knows that N1 is never equal to N2, then a directive can be inserted as
shown here:

CVD$ NODEPCHK
 DO 4 I = 1,N (translated.)
 4 A(I+1,N1) = A(I,N2)+B(I)

Finally, the user can see that the array constant A(N*N) in this loop is not in the
range of the vector A(I) (I = 1 to N) and thus a directive can be used:

CVD$ NODEPCHK (translated.)
 DO 6 I = 1,N
 6 A(I) = B(I)-A(N*N)

NOEQVCHK -- non-recursion in equivalences
It is very rare in real-world programs that recursion is hidden through the use of
EQUIVALENCE statements. However, VAST/77to90 must assume the worst
and not translate in situations where EQUIVALENCE statements could cause
feedback. In programs where many of the variables are EQUIVALENCEd
together, this can result in most of the loops being left un-translated.

The NOEQVCHK directive is provided to tell VAST/77to90 that
EQUIVALENCE statements can be ignored for data dependency analysis. Use of
this directive asserts that variables with different names do not overlap in
storage. (This is almost always the case, anyway.) Equivalence checking can be
suppressed for the entire input file via the VAST/77to90 command line or the
SWITCH directive -ye.

In the example below, several local arrays have been equivalenced to a large
array in common (perhaps to save space). If the arrays could overlap (for
instance, if the value of the variable N was 1500 in the DO 100 loop) then the DO
100 loop cannot be translated. However, as we know the arrays do not overlap,
the NOEQVCHK directive is used for the whole routine.

 COMMON /BIG/ POOL(100000)
 DIMENSION A(1),B(1),C(1)
 EQUIVALENCE (POOL(1),A(1)),(POOL(1001),B(1)),
 1 (POOL(2001),C(1))
CVD$R NOEQVCHK XZurdv\�] ^$w�d�x�x y�[�c,dvz	^{b$|qz	} a�[�~ b�\��vb`��j k
 .

VAST/77to90 User’s Guide 6. Array Syntax 46

 .
 DO 100 I = 1, N (Translated.)
 A(I+IA) = B(I+IB) + C(I+IC)
 100 CONTINUE

PERMUTATION -- declaring safe indirect addressing
When an array with a vector-valued subscript appears on both sides of the equal
sign in a loop, feedback is possible even if the subscript is identical. Feedback
will occur if there are any repeated elements in the subscript.

Sometimes, indirect addressing is used because the elements of interest in an
array are sparsely distributed; in this case an integer array is used to point at the
elements that are really wanted, and there are no repeated elements in the integer
array (e.g., the example below).

This information can be passed to VAST/77to90 through the PERMUTATION
directive. PERMUTATION asserts that the named integer arrays contain no
repeated elements (i.e., they serve merely to permute the elements of the arrays
they indirectly address).

Syntax:

 CVD$ PERMUTATION (ia1, ia2, ... , ian)

PERMUTATION declares the integer arrays (ia1, etc.) to have no repeated values
for the entire routine.

Example:

 CVD$ PERMUTATION (IPNT) (IPNT has no repeated values.)
 ...
 DO 100 I = 1, N
 A(IPNT(I)) = A(IPNT(I)) + B(I)
 100 CONTINUE

VAST/77to90 User’s Guide 7. Additional Features 47

7. Additional Features

Static analysis of variables
In 77-to-90 or 77-to-77 mode, if a listing is requested (-l filename),
VAST/77to90 analyzes all variable uses and definitions, and diagnoses likely or
potential programming errors. Conditions checked for include: use of a variable
that is currently undefined, unused definition of a variable, and appearance of a
variable only once, as a formal argument to an external.

Example:

 1. subroutine test1 (b, c, d, x)
 2. if (b .gt. 0) then
 3. a = 1.0/sqrt(b)
 4. x = x + a
 5. else if (c .gt. 0) then
 6. a = 1.0/sqrt(c)
 7. x = x + a
 8. else if (d .gt. 0) then
 9. x = x + a
10. endif
11. end

Line Typ Message (W=Warning, N=Note)

 9 W *** VARIABLE USED BUT NOT DEFINED *** (A)

Example:

1. subroutine test2 (a, n)
2. real a(*)
3. 10 continue
4. i = i + 1
5. a(i) = 0
6. if (i .lt. n) go to 10
7. end

Line Typ Message (W=Warning, N=Note)

 4 W *** VARIABLE USED BUT NOT DEFINED *** (I)

Example:

1. subroutine test3
2. xxx1 = 0.0
3. call sub1 (xx1)
4. if (xxx1 .gt. 0) call sub2
5. end

VAST/77to90 User’s Guide 7. Additional Features 48

Line Typ Message (W=Warning, N=Note)

 3 N Variable appears only as formal argument.
(XX1)

Example:

1. subroutine test4 (x, y)
2. var1 = 1.0
3. if (x .gt. 0.0) varl = sqrt(x)
4. y = 1.0/var1 + x
5. end

Line Typ Message (W=Warning, N=Note)

 3 W VARIABLE DEFINED BUT NEVER USED (VARL)

Example:

1. subroutine test5
2. common /block/ a, y
3. if (a .gt. 0) then
4. x = 1.1
5. endif
6. y = sqrt(x)
7. end

Line Typ Message (W=Warning, N=Note)

 6 N Variable may be used before defined. (X)

Trace debugging
In trace debugging mode, VAST/77to90 inserts PRINT statements into the source
to trace runtime events, such as assignments, branches, and calls. Trace
debugging is enabled via the -t parameter. If this option is enabled, no other
options are valid. Multiple routines can be traced.

An advantage of this feature is that all events in traced subroutines can be looked
at in batch output. This can be very helpful when trying to isolate the source of a
problem. A disadvantage is that a large amount of output potentially can be
generated. We recommend that this feature be used selectively, only on
particular routines of interest. Future implementations will allow directive-level
control, so that sections of code with a subprogram can be traced.

Example:

 subroutine trace (a, n, s)
 real a(n,n)
 common /block/ i, j, x, y(100)
 a(i,j) = x
 if (y(1) .lt. -3.14) go to 200
 if (y(2) .gt. 0) call sub (x,n)
 do 100 k = 1, n

VAST/77to90 User’s Guide 7. Additional Features 49

 s = s + a(k,1)
 100 continue
 200 continue
 end

Translation with -t:

 subroutine dumbo (a, n, s)
 real a(n,n)
 common /block/ i, j, x, y(100)
 PRINT *, ' DUMBO, Line 4 * dummy argument n=', n
 PRINT *, ' DUMBO, Line 4 * dummy argument s=', s
 a(i,j) = x
 PRINT *, ' DUMBO, Line 4 * subscript i=', i
 PRINT *, ' DUMBO, Line 4 * subscript j=', j
 PRINT *, ' DUMBO, Line 4 * a(i,j)=', a(i,j)
 if (y(1) .lt. (-3.14)) then
 PRINT *, ' DUMBO, Line 5 * y(2) .gt. 0'
 go to 200
 endif
 if (y(2) .gt. 0) then
 PRINT *, ' DUMBO, Line 6 * y(2) .gt. 0'
 PRINT *, ' DUMBO, Line 6 * CALL sub'
 call sub (x, n)
 PRINT *, ' DUMBO, Line 6 * argument x= ',x
 PRINT *, ' DUMBO, Line 6 * argument n= ',n
 endif
 do k = 1, n
 PRINT *, ' DUMBO, Line 7 * k=', k
 s = s + a(k,1)
 PRINT *, ' DUMBO, Line 8 * s=', s
 end do
 200 continue
 PRINT *, ' DUMBO, Line 10 * LABEL', 200
 end

Sample output:

 DUMBO, Line 4 * dummy argument n= 2
 DUMBO, Line 4 * dummy argument s= 0.0
 DUMBO, Line 4 * subscript i= 1
 DUMBO, Line 4 * subscript j= 2
 DUMBO, Line 4 * a(i,j)= 3.4
 DUMBO, Line 6 * y(2) .gt. 0
 DUMBO, Line 6 * CALL sub
 DUMBO, Line 6 * argument x= 2.2
 DUMBO, Line 6 * argument n= 2
 DUMBO, Line 7 * k= 1
 DUMBO, Line 8 * s= 0.75
 DUMBO, Line 7 * k= 2
 DUMBO, Line 8 * s= 2.35
 DUMBO, Line 10 * LABEL 200

VAST/77to90 User’s Guide 8. Output formatting 50

8. Output formatting
This section describes the output formatting feature of VAST/77to90. You can
select from many options and switches to get your code reformatted in the way
you prefer.

Output formatting options fall into two categories: switches (single features that
can be turned on or off) and parameters (numerical values). Output formatting
switches and parameters may be specified either on the VAST/77to90 invocation
line or on the SWITCH directive.

Option switches
The switches in the table 8.1 can be specified by using the -r and -n parameters
on the VAST/77to90 invocation line or on the SWITCH directive.

Table 8.1 -- Output formatting switches

Switch Description Default

a Place inline comments above statement, if they do not fit on
b Put space after a comma in a subscript (e.g. A(X, Y)). off
c Put space after a comma in a list (e.g. CALL X (A, B, C)). on
d Indent first/last lines of DO loops. off
e Put spaces around equal sign (=). on
f Move format statements before END statement. off
g Put spaces around subscript parentheses. off
h Force labels to be on CONTINUE and FORMAT stmts. only on
i Indent first/last lines of IF blocks.. off
j Put spaces around the ** and // operators. off
k Put spaces around .AND., .OR., .EQV.and .NEQV. only. off
l Convert Fortran output to lower case. off
m Squeeze two-line statements into one by ignoring spacing rules. on
n Put spaces around non-subscript parentheses. off
o Put spaces around all logical operators. off
p Put spaces around + and - . on
q Spacing around logical operators (see notes). on
r Generate comments listing external references. off
s Follow spacing rules for operators inside parentheses. off
t Put spaces around * and /. off
u Add keywords UNIT= and FMT=. off
v Put spaces around = in keyword lists. off
w Indent first/last lines of WHERE blocks off
x RENUMB=100:10,FORMAT=900:10,TDYON=R off
y Reserved. --
z Create output file on
1 Terminate DO loops with ENDDO. on
2 Align equals signs for assignment statements in the same block. off

VAST/77to90 User’s Guide 8. Output formatting 51

Notes on output formatting switches:
a. The column in which the inline comment begins is determined by the length

of the comment and by the ILCCOL parameter described later in this chapter.
If the original Fortran line is not reformatted, this switch may still have an
effect if the ILCCOL parameter is set to a column less than the column in
which the original inline comment begins. This switch has no effect on inline
comments that remain inline.

c. Lists are any collection of variable and array names, such as those found in
the argument lists of SUBROUTINE and FUNCTION statements, CALLs to
subroutines or functions, and the input/output list of READ, PRINT, and
WRITE statements.

f. This switch causes all of the FORMAT statements to be collected at the end of
the module. If this switch is off (the default), the FORMAT statements
remain where they were originally. If this switch is on, renumbering will
automatically give FORMAT statements the highest labels, because they will
now be at the end of the routine. This situation may change if the FORMAT=
parameter, described later in this section, is used. (Indentation and spacing of
FORMAT statements is never changed.)

h. Fortran allows statement numbers on any statement, but the only statement
numbers necessary are those used as targets for branches, terminal
statements of a DO loop, and FORMAT statements. Branch targets and
terminal statements of a DO loop can be converted to CONTINUE
statements, and numbered accordingly. With this switch on (the default),
this is done automatically.

k. Put spaces around .AND., .OR., .EQV., and .NEQV. only. The default is
off. For IF statements, the k, o, and q options are interrelated. Only one may
be on at a time. The o switch is: put spaces around all logical operators.
Default is off. The q switch is: put spaces around all logical operators when
alone in an IF statement, else around .AND., .OR., .EQV. and .NEQV.
only.

Example:
LOGICAL L1, L2
IF (A(I).GT.B(I)) A(I) = B(I)
IF (C(I).GT.D(I).AND..NOT.L1) C(I) = D(I)
IF (L1 .AND. .NOT.L2) L2 = .TRUE.

This example becomes, with the k switch on and the o and q switches off:
LOGICAL L1, L2
IF (A(I).GT.B(I)) A(I) = B(I)
IF (C(I).GT.D(I) .AND. .NOT.L1) C(I) = D(I)
IF (L1 .AND. .NOT.L2) L2 = .TRUE.

with the o switch on and the k and q switches off:
LOGICAL L1, L2
IF (A(I) .GT. B(I)) A(I) = B(I)
IF (C(I) .GT. D(I) .AND. .NOT. L1) C(I) = D(I)
IF (L1 .AND. .NOT. L2) L2 = .TRUE.

and with the q switch on and the k and o switches off:
LOGICAL L1, L2
IF (A(I) .GT. B(I)) A(I) = B(I)
IF (C(I).GT.D(I) .AND. .NOT.L1) C(I) = D(I)

VAST/77to90 User’s Guide 8. Output formatting 52

IF (L1 .AND. .NOT.L2) L2 = .TRUE.

l. This switch causes VAST/77to90 to convert all of the executable part of the�����������A����BU������� 5��!8&('*),+.-0/�/�����1�2�� 4����������$���������# 8B:������C��(
�������$�������>���
����B:��$���� H�(�� 4B:���F�q!8+�=���;� 5��$� 8��������������������� 8B:������C��(�%���������>���:��=��(H��67�(�%�� 5����
they were in the input program. (Character constants and comments are also
not converted.)

m. Sometimes, strict adherence to the output formatting spacing rules yields
two-line statements that would be more readable as one line. By ignoring
some of the spacing rules, the statement is made to fit on one line. If you
want this automatic squeezing to be turned off, use -n m.

n. Non-subscript parentheses occur in IF, CALL, READ, WRITE,
SUBROUTINE, FUNCTION, and other statements.

o. See explanation under switch k.
q. See explanation under switch k.
r. Generate a block of comments that lists the subroutines and external

functions called by the current program unit (including inlined routines).
This block of comments is inserted into the translated program unit
preceding the first executable statement. Routines are listed in first-
occurence order. If no subroutines or external functions are called, a
comment to that effect is inserted.

s. This switch uses the settings of the j, p, and t switches to determine spacing
inside of parentheses. If the switch is off, as is the default, then no spacing
will take place.

u. Fortran allows the keywords UNIT= and FMT= in input and output
statements. Most codes, however, use the positional notation. If desired, the
keywords will be added and formatted in the same manner as any other
keywords in the input or output statement.
Note that if the original statement contains a UNIT= or FMT= keyword, and
the switch is off, the keywords will still remain. This switch does not remove
any keywords from the original statement.

x. A shorthand switch for invoking RENUMB=100:10, FORMAT=900:10, -r
R. Causes renumbering of labels and insertion of comment block
summarizing externals.

z. Create an optimized source file. This switch may be turned off if the
diagnostic listing only is wanted. Turning this switch off may speed compile
time and reduce disk space used. The setting of this switch does not affect the
listing of the transformed source in the listing file.

Output format parameters
The following output format parameters can appear on the VAST/77to90
command line or on the SWITCH directive. On the VAST/77to90 command
line, these parameters are preceeded by the -Z flag (e.g. -Z RENUM=100:10)

Label renumbering
RENUMB=m:n
This parameter controls the renumbering of the statement labels within a routine.
If only the RENUMB= part appears without a number following the =, then the

VAST/77to90 User’s Guide 8. Output formatting 53

statement labels are renumbered starting at 100 and increasing by 10 for each
successive label.

If the parameter is given as RENUMB=m, where m is any number (less than 99999),
then the increment defaults to 10. If the parameter is given as RENUMB=:n, then
the starting number defaults to 100. The forms RENUMB=m: and RENUMB=: are
not allowed. Use RENUMB=n or RENUMB=, respectively.

FORMAT=m:n
This parameter works exactly like the RENUMB parameter, but only on FORMAT
statements. If a different numbering scheme is desired for FORMAT statements
than for other statements, this parameter is used. If FORMAT= is used alone, the
default is a starting number of 900 and an increment of 10. The forms FORMAT=m
and FORMAT=:n are also valid as described in the RENUMB=m:n section above.

Label alignment
LABELS=n:l

This parameter controls placement of statement labels within the statement label
field. For the labels to be left-justified, l should be set to the character L. For the
labels to be right-justified, l should be set to the character R. The column in
which the labels are justified is given by n, which must be a number from 0 to 5.
If n is 0, no alignment of statement labels occurs. The default is to right-justify
labels in column 5 (5:R).

Fortran 90 construct names are treated as part of the statement they apply to, and
indented accordingly, with the remainder of the statement following after a
single space.

Indentation
There are five indentation parameters:

INDDO=n
INDIF=n
INDWH=n
INDCN=n
INDAL=n

where n is the number of spaces to indent. In each case, n must be a number
between 0 and 10, inclusive.

INDDO is for DO blocks, INDIF for IF blocks, INDWH for WHERE blocks, and
INDCN is the number of spaces to indent continued lines. INDAL sets all the
other parameters to n (INDDO, INDIF, INDWH, and INDCN). The default for all
of these parameters is 3.

For a DO block, the DO statement and the terminal statement of the DO are
placed at the same indentation level, and statements between them occur at the
new indentation level. For an IF block, the IF statement itself, any ELSE IF or
ELSE statements, and the ENDIF statement all occur at the same indentation
level, and statements between them occur at the new indentation level.

VAST/77to90 User’s Guide 8. Output formatting 54

Continued lines are indented n spaces from the initial line, where n is given by
the INDCN parameter.

LSTCOL=n

This parameter gives the last column available for indentation, that is, no
statement will be started after this column. The default is 31.

Indentation is preserved up to the column limit given by LSTCOL, and no
statement begins after column n. Using the defaults gives eight separate block
levels, each indented by three spaces from the previous level.

Inline comments
ILCCOL=n

This parameter aligns inline comments starting at column n. (For fixed-format
output, if n is less than 15 or greater than 66, no alignment is done.) Column n
is the column in which the inline comment delimiter will appear.

The default is to align inline comments at column 50 (ILCCOL=50). To turn off
alignment of the inline comments, use ILCCOL=0. If an inline comment will fit
on the original line, even after reformatting, but will not start at the column used
for alignment, it will be placed on the original line so that the last character of the
comment will be in the last position of the line. If an inline comment does not fit
on the same line as before, a comment will be inserted above the line (or below if
the A switch is off), and the comment will be aligned to the appropriate column if
possible.

Continuation lines
CONCHR=*

For fixed-format output, this parameter determines what character to use for
continued lines. By default, the successive numbers 1,2,3,...8,9 are used. The
tenth continued line uses the decimal point and then the cycle begins over again
with 1. If the CONCHR= parameter is used, then the character following the = is
used as the continuation character. If that character is 0, the default is used,
because 0 is not a valid continuation character. (This parameter applies to fixed
format source only.) A statement which must be continued on another line may
be broken at any point, except within a name or a constant.

Output line length
Zolen=n

For free format output, this parameter allows specification of the output line
length (up to 132 columns).

VAST/77to90 User’s Guide 8. Output formatting 55

FORMAT and DATA statements
The output formatting does not change the indentation or spacing inside
FORMAT and DATA statements. (However, FORMAT statements may
optionally be renumbered and/or moved to the end of the routine.)

Example
Here is an example of VAST/77to90 formatting a Fortran 77 routine. This
example shows the use of several switches, but you can rely on the defaults as
well.

Here is the input:

CVD$ SWITCH,-rfjnostuv2,renumb=10:5
 SUBROUTINE TIDYX1
 REAL A(100),B(100),C(100),D(100),E(100)
 REAL AA(100,100),BB(100,100),
 1 CC(100,100),DD(100,100)
 DO 111J=1, 100
 A(J)=SQRT(B(J))
111 CONTINUE
9999 FORMAT (3F12.8)
 DO 132 J=1,100
 S = B(J)-D(J)*E(J) ! note alignment
 B(J)=D(J)+E(J)/S**2 ! of inline comments.
 IF (A(J).GT.B(J).AND.C(J).LT.D(J)) GO TO 100
 C(J)=B(J)/C(J)
 GO TO 19
100 CONTINUE
 C(J)=C(J)/B(J)
 19 CONTINUE
 DO 2 I =1,100
 A(J)=AA(I,J)
 AA(I,J)=A(J)+B(I)/BB(I,J)
 2 CC(I,J)=DD(I,J)
 WRITE(6,9999,ERR=154) A(J),B(J),C(J)
132 CONTINUE
 154 RETURN
 END

And this is the cleaned-up version:

 SUBROUTINE TIDYX1
 REAL A(100),B(100),C(100),D(100),E(100)
 REAL AA(100,100),BB(100,100),
 1 CC(100,100),DD(100,100)
 DO J = 1, 100
 A(J) = SQRT (B(J))
 END DO
 DO J = 1, 100
 S = B(J) - D(J) * E(J) ! note alignment...
 B(J) = D(J) + E(J) / S ** 2 ! of inline comments.
 IF (A(J) .LE. B(J) .OR. C(J) .GE. D(J)) THEN
 C(J) = B(J) / C(J)
 ELSE

VAST/77to90 User’s Guide 8. Output formatting 56

 C(J) = C(J) / B(J)
 ENDIF
 DO I = 1, 100
 A(J) = AA(I, J)
 AA(I, J) = A(J) + B(I) / BB(I, J)
 CC(I, J) = DD(I, J)
 END DO
 WRITE (UNIT=6, FMT=15, ERR=10) A(J), B(J), C(J)
 END DO
10 CONTINUE
 RETURN
15 FORMAT (3F12.8)
 END

VAST/77to90 User’s Guide 9. Diagnostic Messages 57

9. Diagnostic Messages
This section shows selected VAST/77to90 messages, grouped by category. Most
of the messages described here have to do with translation of loops into array
syntax.

Data dependency conflicts
Data dependency messages are always followed by the name of the variable
which is causing the problem. If outer loop translation is being attempted, the
label and index of the loop causing the problem is given as well.

"Feedback of array elements"

 DO 4 I=1,N
 4 A(I+1) = A(I) + B(I)

Feedback of results makes the loop recursive and thus unsafe to translate to array
syntax.

"Feedback of scalar value from one loop pass to another"

 DO 112 I = 1,N
 A(I) = A(I) + SCA
 112 SCA = A(I)/C(J)

The variable SCA is used in the first line of the DO loop to set A(I), and then is set
to a function of A(I) in the last line. This creates feedback of elements of A from
one loop pass to the next, which prevents translation to array syntax. SCA is
called a "carry-around" scalar, as it carries a value around to the next pass of the
loop.

"Potential feedback of array elements -- use directive if
ok"

 DO 3 I=1,N
 3 A(I+J) = A(I) + B(I)

It is not clear whether there is feedback between the two uses of A in this loop or
not (it depends on the value of J). Loops of this kind that the user is sure are safe
can be translated by putting the directive CVD$ NODEPCHK in front of the loop.
Here is another case where this message would result:

 DO 1 I=1,N
 1 B(I) = B(IB(I))+A(I)

B(IB(I)) is a gathered array, and as the values in IB(I) are unknown, it may
conflict with the assignment of elements of B on the left side of the equal sign. If

VAST/77to90 User’s Guide 9. Diagnostic Messages 58

the pattern of B(IB(I)) is known not to overlap B(I), then the NODEPCHK
directive should be used.

As a convenience, the d option switch or NODEPCHK directive with routine or
global scope may be used instead of loop-by-loop directives.

"Multiple store conflict"

 DO 100 I = M,N
 A(I) = B(I)
 100 IF (C(I) .GT. 0) A(I-1) = C(I)

Stores into overlapping sections of the same array must be done in the same
order as in the scalar loop.

"Potential multiple store conflict -- use directive if ok"

 DO 100 I=1,N
 A(I+J)=B(I)
 100 A(I+K)=C(I)

The loop above has a potential overlap between the two stores into A; usually in
these situations there is no real overlap between the two sections of A and the
NODEPCHK directive should be used to allow the loop to translate.

"Feedback of array elements (equivalenced arrays)"

Actual feedback between arrays equivalenced together.

"Potential feedback (equivalenced arrays) -- use directive
if ok"

 COMMON /BLOCK/ A(999)
 EQUIVALENCE (S,A(100))
 .
 .
 .
 DO 67 I = M, N
 S = B(I)**2
 A(I) = S + 1.0/S
 67 CONTINUE

Either two arrays or an array and a scalar are equivalenced, and their storage
relationship in the loop cannot be determined. Use the NODEPCHK or
NOEQVCHK directives or the -yp or -ye switches to allow translation, if there is
in fact no recursion.

"Equivalence of scalars prevents translation - use directive
if ok"

 COMMON / BLOCK / A(99)
 EQUIVALENCE (A(1),S), (A(2),T)
 .
 .
 .

VAST/77to90 User’s Guide 9. Diagnostic Messages 59

 DO 68 J = M, N (Not translated.)
 S = B(I)**2
 T = C(I)**2
 D(I) = SQRT(S+T)
 68 CONTINUE

Two scalars are in the same equivalence class and at least one is modified in the
loop. The NODEPCHK or NEQVCHK directives, or the -yp or -ye switches,
may be used to allow translation, if in fact there is no recursion.

"Too many data dependency problems"

The loop has exceeded the maximum number of data dependency conflicts
allowed (10). Translation of the loop is abandoned at this point to avoid printing
out further messages.

Translation Diagnostics
Translation diagnostics point out constructs that prevent a loop from being
translated.

Statement types
These messages complain about types of statements that prevent translation.

"ASSIGN prevents loop translation"

 DO 210 I = 1, N
 IF (A(I) .GT. 0) ASSIGN 225 TO TOGO
 210 CONTINUE

"ASSIGNed GOTO prevents loop translation"

 DO 220 I = 1, N
 GOTO TOGO
 220 CONTINUE
 225 CONTINUE

"Computed GOTO prevents loop translation"

 DO 230 I = 1, N
 GO TO (231, 232, 233) IGO(I)
 231 B(I) = 0
 232 B(I) = B(I) + A(I)
 233 B(I) = B(I) * C(I)
 230 CONTINUE

"I/O statements prevent loop translation"

 DO 240 I = 1, N
 WRITE (IOUNIT) A(I)*B(I)+C(I)
 240 CONTINUE

VAST/77to90 User’s Guide 9. Diagnostic Messages 60

"RETURN prevents loop translation"

 DO 250 I = 1, N
 IF (X(I) .LT. 0) RETURN
 Y(I) = SQRT(X(I))
 250 CONTINUE

"STOP prevents loop translation"

 DO 260 I = 1, N
 IF (X(I) .LT. 0) STOP 99
 Y(I) = ALOG (X(I))
 260 CONTINUE

Branches
The messages below relate to handling of conditional operations.

"Backward transfers prevent loop translation"

 DO 107 I=1,N
 104 A(J) = SQRT(B(J-1) + D(I))
 J = J + 1
 IF (B(J) .GT. LIMIT) GO TO 104
 107 C(I) = A(J-1)

The branch to label 104 is backward, not forward, and prevents translation. In
some cases however, backward transfers may be converted into separate DO
loops.

"Branches out of the loop prevent translation"

 DO 108 I=1,N
 IF (A(I).LT.0) GO TO 777
 108 B(I)=6.0

The label "777" is not in the loop.

"Branching too complex to translate this loop"

Because of limits on time and table space, conditional constructs with more than
six simultaneously active conditions (i.e. IF-THENs, IF-GOTOs, etc.) cannot be
converted to array syntax.

External references
The messages below deal with external references in loops.

"Subroutine call prevents loop translation"

 DO 110 I = 1,N
 A(I) = SQRT(B(I)/C(I))
 CALL REVAMP(A(I),D(I))
 110 D(I) = EXP(A(I)+X)

VAST/77to90 User’s Guide 9. Diagnostic Messages 61

"Reference to function that has no array version"

 DO 115 I=1,N
 115 A(I) = MYFUNC(B(I))

References to non-intrinsic functions in a loop prevent translation of the loop.

DO statement
These messages relate to DO statements.

"DO statement parameters must be integer for array translt."

 DO 100 W = 1.0001, 1000000.
 A(I) = W
 100 CONTINUE

Non-integer variables or constants are not allowed as the loop index or in the
start, end or increment fields for translation purposes to array syntax.

"User function references not allowed in iteration count"

 DO 210 I = 1, NLEN(J,K)
 210 A(I)=0.

In this example NLEN is an external user function. Such functions cannot appear
in the iteration count for a DO loop (they cannot be in the start, end or increment
fields of the DO statement) for the loop to be translated to array syntax.
Statement functions are allowed, however.

Outer loops

"Outer loop sets inner loop iteration count"

 DO 350 J = 1, N
 DO 350 I = 1, J
 S = S + D(J,I)
 350 CONTINUE

For an outer loop to be translatable, the iteration count of any inner loops must
not change between passes of the outer loop. Here the inner loop is translated,
but not the outer.

"Outer loop conditionally executes inner loop"

 DO 361 J = 1, N
 IF (A(J) .LE. 0) THEN
 DO 360 I = 1, M
 D(J,I) = SQRT(A(J)*D(J,I))
 360 CONTINUE
 ENDIF
 361 CONTINUE

Similarly, the inner loop will be translated, but not the outer.

VAST/77to90 User’s Guide 9. Diagnostic Messages 62

"No indexing done along this loop"

 DO 371 MQ = 1, 1000
 DO 370 I = 1, N
 S = S + A(I)
 370 CONTINUE
 371 CONTINUE

The outer loop does no useful work, and is not translated.

"Inner dependence creates outer dependence"

 DO 381 J = 1, N
 DO 380 I = 1, M
 A(I) = A(I-1) * B(J)
 380 CONTINUE
 381 CONTINUE

In some situations, recursion in the inner loop prevents the outer from translating
as well.

Miscellaneous
These messages fall into none of the previous categories.

"Null loop body"

 DO 111 I=1,N
 111 CONTINUE

Nothing in the loop. (The loop is not eliminated.)

"Character data type inhibits loop translation"

 DO 200 I = 1, N
 P(I)(1:2) = Q(I)(2:3)
 200 CONTINUE

Use of character type data prevents a loop from being considered for translation.

Warnings

Potential Errors
These warning messages relate to potential errors in the input program.

"*** Variable used but never defined ***"

A local variable is used in executable statements but is never defined.

VAST/77to90 User’s Guide 9. Diagnostic Messages 63

"Variable defined but never used"

A local variable is defined in executable statements but is never used.

"*** Variable used but not defined ***"

A local variable is used when it is undefined, although it is defined elsewhere in
the program unit.

"Variable defined but not used"

This definition of a local variable is not used, although the variable is used
elsewhere in the program unit.

"Variable appears only in argument list"

A local variable appears only once, in the argument list of a subroutine call.

"Dead code"

I����3
� 8�� 5�����������:��?���������B:=����%=�G�C����%��;� 5����?���=����#���
�$��67� 8?�����B���?��%������$����G��%�3�
never be executed.

Obsolescent Features
Additional warnings are generated for obsolescent features that are no longer
preferred usage.

Syntax errors
There are a very large number of syntax error messages. These messages are for
the most part self explanatory, and so are not repeated here. .

Internal Errors
Please report any VAST/77to90 internal errors immediately to your support
representative.

"Internal error detected (phase)-- please report"

Directive Errors
These messages describe errors in the way directives to VAST/77to90 have been
used.

"Unknown directive -- it is ignored"

CVD$ SCALARIZE

"Switch input error"

VAST/77to90 User’s Guide 9. Diagnostic Messages 64

CVD$ SWITCH=-1

"Excess characters following directive"

CVD$ SKIP THIS LOOP, PLEASE

In this case, the characters following SKIP are invalid.

Notes
Notes are not generated by default. They can be enabled with the -po switch.

"IF loop converted to DO-loop"

An IF loop has been converted to a DO loop. (The resulting DO loop may or may
not be translatable to array syntax.)

VAST/77to90 User’s Guide Questions or Comments 65

Questions or Comments
Your feedback is important to us. If you have any questions, suggestions, or
comments about VAST/77to90 or this document, please send them to:

 Pacific-Sierra Research Corporation
 Computer Products Group
 VAST/77to90 Product Manager
 2901 28th Street
 Santa Monica, CA 90405

 Phone: (310)-314-2300

 Fax: (310)-314-2323

 Email: info@psrv.com

VAST/77to90 User’s Guide Index 66

Index
A

aggressive array syntax, 28, 32, 37, 39, 41
alternate return, 26
arithmetic IF, 16
array syntax, 28

C

carry-around scalars, 33
CASE, 18
command file, 4
command line, 3
COMMON, 20
computed GOTOs, 18
conditional statements, 35
conformability, 37
continuation lines, 54
control statements, 16
CYCLE, 17

D

data dependency analysis, 41
declarations, 15
diagnostic messages, 10, 57
directives, 24, 26

E

END DO, 17
EXIT, 17
extent, array, 37

F

file extensions, 5
Fortran 77 extensions, 15
free format, 15

G

GOTO, 16

VAST/77to90 User’s Guide Index 67

I

IF loops, 28
IMPLICIT NONE, 15
INCLUDE, 19, 20, 21
indentation, 53
indirect addressing, 31
inline comments, 54
interfaces, 21
intrinsic functions, 36

L

label alignment, 53
label renumbering, 52
listing, 10
listing control switches. See switches, listing control
listing page length, 14
loop disposition codes, 10
loop rerolling, 40

M

massively parallel systems, 1
matrix multiplication, 39
MODULE, 19, 20

O

ONLY, 20
outer loops, 37
output formatting, 50
output formatting switches. See switches, output formatting

P

pointers,.Fortran 77, 15

R

rank, array, 37
reduction function, 33
RESHAPE, 37

S

scalar promotion, 32
SPREAD, 37
statement functions, 26
static analysis, 47
switches, listing control, 12

VAST/77to90 User’s Guide Index 68

switches, output formatting, 50
switches, transformation, 6

T

tidy, 50
trace debugging, 48
transformation switches. See switches, transformation
transformational intrinsics, 37
TRANSPOSE, 37
type kinds, 15

U

usage summary, 3

V

VAX structures, 23
vector subscript, 31

